Genetic Resources and Crop Evolution

, Volume 64, Issue 4, pp 761–773 | Cite as

Genetic studies regarding the control of seed pigmentation of an ancient European pointed maize (Zea mays L.) rich in phlobaphenes: the “Nero Spinoso” from the Camonica valley

  • Elena Cassani
  • Daniel Puglisi
  • Enrico Cantaluppi
  • Michela Landoni
  • Luca Giupponi
  • Annamaria Giorgi
  • Roberto Pilu
Research Article


Several preclinical studies have suggested that the regular consumption of flavonoid-rich foods is associated to a reduced risk of chronic diseases. For this reason, in the last years a renewed interest for the ancient landraces rich in flavonoids or other bioactive molecules is growing. Preservation and valorisation of these ancient landraces is very important, not only for economic considerations regarding the farmers within the small rural communities, where the particular maize germplasm has been developed, but also from a scientific point of view. In this work we characterized the ancient cultivar named “Nero Spinoso” from the Camonica valley, the biggest valley in the north-west region of Lombardy (Italy). The peculiarity of this landrace is the colour and the pointed shape of the kernels. We showed after spectrophotometric and TLC analysis that this variety accumulates high amounts of phlobaphenes (320 A510/100 g flour). Genetic data demonstrate that phlobaphene pigmentation is under the control of a monogenic dominant gene. Further mapping and sequencing data showed that the pigmentation is driven by the presence of a strong allele of Pericarp 1 (P1) gene, a transcription factor belonging to the myb transcription factor gene family. The “Nero Spinoso” variety represents an ancient landrace that could be considered a real functional food and a useful tool in future breeding programmes.


Flint maize Landraces Pericarp 1 gene Phlobaphenes Pointed maize Zea mays 



We wish to thank Dr. Davide Reginelli and Dr. Mariarosa Buffoli for their hard work in the field and Dr. Lesley Currah for her editing and suggestions. This study was partly supported by “Accordo di Programma, affermazione in Edolo del Centro di Eccellenza Università della Montagna” MIUR-Università degli Studi di Milano, Prot. No. 386 1293-05/08/2011 and by Fondazione della Comunità Bresciana-Onlus.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. Anderson EG (1924) Pericarp studies in maize II. The allelomorphism of a series of factors for pericarp color. Genetics 9:442–453PubMedPubMedCentralGoogle Scholar
  2. Anderson E, Cutler H (1942) Races of maize: their recognition and classification. Ann Mo Bot Gard 29:69–88CrossRefGoogle Scholar
  3. Bianchi A, Ghatnekar MV, Ghidoni A (1963) Knobs in Italian maize. Chromosoma 14:601–617CrossRefGoogle Scholar
  4. Brandolini A (1958) Il germoplasma del mais e la sua conservazione. Maydica 3:4–14Google Scholar
  5. Brandolini A, Brandolini A (2009) Maize introduction, evolution and diffusion in Italy. Maydica 54:233–242Google Scholar
  6. Casas MI, Duarte S, Doseff AI, Grotewold E (2014) Flavone-rich maize: an opportunity to improve the nutritional value of an important commodity crop. Front Plant Sci 5:440. doi: 10.3389/fpls.2014.00440 CrossRefPubMedPubMedCentralGoogle Scholar
  7. Chopra S, Athma P, Peterson T (1996) Alleles of the maize P gene with distinct tissue specificities encode Myb-homologous proteins with C-terminal replacements. Plant Cell 8:1149–1158. doi: 10.1105/tpc.8.7.1149 CrossRefPubMedPubMedCentralGoogle Scholar
  8. Dellaporta SL, Wood J, Hicks JB (1983) A plant DNA minipreparation: version II. Plant Mol Biol Rep 1:19–21CrossRefGoogle Scholar
  9. Dooner HK, Robbins TP, Jorgensen RA (1991) Genetic and developmental control of anthocyanin biosynthesis. Ann Rev Gen 25:173–199. doi: 10.1146/ CrossRefGoogle Scholar
  10. Eschholz TW, Stamp P, Peter R, Leipner J, Hund A (2010) Genetic structure and history of Swiss maize (Zea mays L. ssp. mays) landraces. Genet Resour Crop Evol 57:71–84CrossRefGoogle Scholar
  11. Falcone Ferreyra ML, Rodriguez E, Casas MI, Labadie G, Grotewold E, Casati P (2012) Identification of a bifunctional maize C- and O-glucosyltransferase. J Biol Chem 288:31678–31688CrossRefGoogle Scholar
  12. Grotewold E (2006) The genetics and biochemistry of floral pigments. Annu Rev Plant Biol 57:761–780. doi: 10.1146/annurev.arplant.57.032905.105248 CrossRefPubMedGoogle Scholar
  13. Grotewold E, Athma P, Peterson T (1991) Alternatively spliced products of the maize P gene encode proteins with homology to the DNA-binding domain of myb-like transcription factors. Proc Natl Acad Sci USA 88(11):4587–4591CrossRefPubMedPubMedCentralGoogle Scholar
  14. Grotewold E, Sainz MB, Tagliani L, Hernandez JM, Bowen B, Chandler VL (2000) Identification of the residues in the Myb domain of maize C1 that specify the interaction with the bHLH cofactor. Proc Natl Acad Sci USA 97:13579–13584CrossRefPubMedPubMedCentralGoogle Scholar
  15. Lago C, Landoni M, Cassani E, Doria E, Nielsen E, Pilu R (2013) Study and characterization of a novel functional food: purple popcorn. Mol Breed 31:575–585CrossRefGoogle Scholar
  16. Lago C, Cassani E, Zanzi C, Landoni M, Trovato R, Pilu R (2014a) Development and study of a maize cultivar rich in anthocyanins: coloured polenta, a new functional food. Plant Breed. 133:210–217CrossRefGoogle Scholar
  17. Lago C, Landoni M, Cassani E, Attanasiu S, Cantaluppi E, Pilu R (2014b) Development and characterization of a coloured sweet corn line as a new functional food. Maydica 59:191–200Google Scholar
  18. Lago C, Landoni M, Cassani E, Cantaluppi E, Doria E, Nielsen E, Giorgi A, Pilu R (2015) Study and characterization of an ancient European flint white maize rich in anthocyanins: Millo Corvo from Galicia. PLoS ONE 10(5):e0126521. doi: 10.1371/journal.pone.0126521 CrossRefPubMedPubMedCentralGoogle Scholar
  19. Liu K, Goodman M, Muse S, Smith JS, Buckler E, Doebley J (2003) Genetic structure and diversity among maize inbred lines as inferred from DNA microsatellites. Genetics 165:2117–2128PubMedPubMedCentralGoogle Scholar
  20. Lopez-Martinez LX, Oliart-Ros RM, Valerio-Alfaro G, Lee CH, Parkin KL, Garcia HS (2009) Antioxidant activity, phenolic compounds and anthocyanins content of eighteen strains of Mexican maize. LWT-Food Sci Technol 42:1187–1192CrossRefGoogle Scholar
  21. Mangelsdorf PC, Reeves RG (1959) The origin of com. III. Modern races, the product of teosinte introgression. Bot Mus LeaH Harvard Univ 18:389–411Google Scholar
  22. Matsuoka Y, Vigouroux Y, Goodman MM, Sanchez GJ, Buckler E, Doebley J (2002) A single domestication for maize shown by multilocus microsatellite genotyping. Proc Natl Acad Sci USA 99:6080–6084CrossRefPubMedPubMedCentralGoogle Scholar
  23. McMullen MD, Kross H, Snook ME, Cortés-Cruz M, Houchins KE, Musket TA, Coe EH Jr (2004) Salmon silk genes contribute to the elucidation of the flavone pathway in maize (Zea mays L.). J Hered 95(3):225–233. doi: 10.1093/jhered/esh042 CrossRefPubMedGoogle Scholar
  24. Messedaglia L (1924) Notizie storiche sul mais. Quaderno mensile No. 7. Sez. Credito Agrario Istituto Federale Credito del Risorgimento delle Venezie, Verona, ItalyGoogle Scholar
  25. Mir C, Zerjal T, Combes V, Dumas F, Madur D, Bedoya C, Dreisigacker S, Franco J, Grudloyma P, Hao PX, Hearne S, Jampatong C, Laloë D, Muthamia Z, Nguyen T, Prasanna BM, Taba S, Xie CX, Yunus M, Zhang S, Warburton ML, Charcosset A (2013) Out of America: tracing the genetic footprints of the global diffusion of maize. Theor Appl Genet 126:2671–2682CrossRefPubMedGoogle Scholar
  26. Morohashi K, Casas MI, Falcone Ferreyra ML, Mejía-Guerra MK, Pourcel L, Yilmaz A, Feller A, Carvalho B, Emiliani J, Rodriguez E, Pellegrinet S, McMullen M, Casati P, Grotewold E (2012) A genome-wide regulatory framework identifies maize Pericarp Color1 controlled genes. Plant Cell 24(7):2745–2764CrossRefPubMedPubMedCentralGoogle Scholar
  27. Petroni K, Pilu R, Tonelli C (2014) Anthocyanins in corn: a wealth of genes for human health. Planta 240:901–911CrossRefPubMedGoogle Scholar
  28. Pilu R, Piazza P, Petroni K, Ronchi A, Martin C, Tonelli C (2003) pl-bol3, a complex allele of the anthocyanin regulatory pl1 locus that arose in a naturally occurring maize population. Plant J 36:510–521CrossRefPubMedGoogle Scholar
  29. Pilu R, Cassani E, Sirizzotti A, Petroni K, Tonelli C (2011) Effect of flavonoid pigments on the accumulation of fumonisin B1 in the maize kernel. J Appl Genet 52(2):145–152CrossRefPubMedGoogle Scholar
  30. Piperno DR, Ranere AJ, Holst I, Iriarte J, Dickau R (2009) Starch grain and phytolith evidence for early ninth millennium B.P. maize from the Central Balsas River Valley, Mexico. Proc Natl Acad Sci USA 106:5019–5024. doi: 10.1073/pnas.0812525106 CrossRefPubMedPubMedCentralGoogle Scholar
  31. Ranere AJ, Piperno DR, Holst I, Dickau R, Iriarte J (2009) Preceramic human occupation of the Central Balsas Valley, Mexico: cultural context of early domesticated maize and squash. Proc Natl Acad Sci USA 106:5014–5018CrossRefPubMedPubMedCentralGoogle Scholar
  32. Rodriguez VM, Soengas P, Landa A, Ordas A, Revilla P (2013) Effects of selection for color intensity on antioxidant capacity in maize (Zea mays L.). Euphytica 193:339–345CrossRefGoogle Scholar
  33. Sampietro DA, Fauguel CM, Vattuone MA, Presello DA, Catalán CAN (2013) Phenylpropanoids from maize pericarp: resistance factors to kernel infection and fumonisin accumulation by Fusarium verticillioides. Eur J Plant Pathol 135:105–113CrossRefGoogle Scholar
  34. Styles ED, Ceska O (1977) The genetic control of flavonoid synthesis in maize. Can J Genet Cytol 19:289–302CrossRefGoogle Scholar
  35. van Heerwaarden J, Doebley J, Briggs W, Glaubitz CJ, Goodman M, Gonzalez JDS, Ross-Ibarra J (2011) Genetic signals of origin, spread, and introgression in a large sample of a maize landraces. Proc Natl Acad Sci USA 108:1088–1092. doi: 10.1073/pnas.1013011108 CrossRefPubMedGoogle Scholar
  36. Vigouroux Y, Glaubitz JC, Matsuoka Y, Goodman MM, Sanchez GJ, Doebley J (2008) Population structure and genetic diversity of New World maize races assessed by microsatellites. Am J Bot 95:1240–1253CrossRefPubMedGoogle Scholar
  37. Warburton ML, Reif JC, Frisch M, Bohn M, Bedoya C, Xia XC, Crossa J, Franco J, Hoisington D, Pixley K, Taba S, Melchinger AE (2008) Genetic diversity in CIMMYT nontemperate maize germplasm: landraces, open pollinated varieties, and inbred lines. Crop Sci 48(2):617–624. doi: 10.2135/cropsci2007.02.0103 CrossRefGoogle Scholar
  38. West CE, Eilander A, van Lieshout M (2002) Consequences of revised estimates of carotenoid bioefficacy for dietary control of vitamin A deficiency in developing countries. J Nutr 132:2920S–2926SPubMedGoogle Scholar
  39. Winkel-Shirley B (2001) Flavonoid biosynthesis. A colorful model for genetics, biochemistry, cell biology, and biotechnology. Plant Physiol 126(2):485–493. doi: 10.1104/pp.126.2.485 CrossRefPubMedPubMedCentralGoogle Scholar
  40. Zilic S, Serpen A, Akıllıoglu G, Vural Gokmen V, Vancetovic J (2012) Phenolic compounds, carotenoids, anthocyanins, and antioxidant capacity of colored maize (Zea mays L.) kernels. J Agric Food Chem 60:1224–1231CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  • Elena Cassani
    • 1
  • Daniel Puglisi
    • 1
  • Enrico Cantaluppi
    • 1
  • Michela Landoni
    • 2
  • Luca Giupponi
    • 3
  • Annamaria Giorgi
    • 1
    • 3
  • Roberto Pilu
    • 1
  1. 1.Dipartimento di Scienze Agrarie e Ambientali - Produzione, Territorio, AgroenergiaUniversità degli Studi di MilanoMilanItaly
  2. 2.Dipartimento di BioscienzeUniversità degli Studi di MilanoMilanItaly
  3. 3.Centre for Applied Studies in the Sustainable Management and Protection of the Mountain Environment - Ge.S.Di.Mont.Università degli Studi di MilanoEdoloItaly

Personalised recommendations