Advertisement

Genetic Resources and Crop Evolution

, Volume 63, Issue 5, pp 859–867 | Cite as

Allelic diversity of newly characterized submergence-tolerant rice (Oryza sativa L.) germplasm from Bangladesh

  • Khandakar M. Iftekharuddaula
  • Sharmistha Ghosal
  • Zennia J. Gonzaga
  • Al Amin
  • Hirendra N. Barman
  • Rumena Yasmeen
  • Md. Moinul Haque
  • Jerome Carandang
  • Bertrand C. Y. Collard
  • Endang M. Septiningsih
Research Article

Abstract

A total of 300 germplasm accessions collected from submergence-prone areas of Bangladesh were selected from the genebank of the Bangladesh Rice Research Institute (BRRI) for an allelic diversity study on submergence tolerance during the vegetative stage. Through screening under controlled submergence for three consecutive years, eight accessions were selected for having submergence tolerance with survival ranging from 71.2 to 95.4 %. A total of 20 SUB1-region SSR and Indel markers, spanning from 4.5 to 8.6 Mb on chromosome 9, were used to study the allelic diversity of 16 selected rice accessions, including the eight submergence-tolerant accessions and eight sensitive and tolerant checks. A total of 58 alleles were detected at the loci of the 20 markers across the 16 rice accessions. The number of alleles per locus ranged from two to five, with an average of 2.90 alleles across the 20 loci. Genetic similarity analysis using the unweighted pair-group method using arithmetic mean (UPGMA) clustering system generated two major genetic clusters, each of them with three subgroups. DG1-349, Kalojoma, DSL-78-8, Damsi and Putidepa were identified as having higher submergence tolerance but not possessing the same resistance allele as FR13A. Furthermore, RT-PCR analysis of SUB1A, the gene underlying the SUB1 QTL, showed that the transcript abundance in these accessions was significantly less than that of FR13A. Thus, these accessions were selected as potential genetic donors for identifying novel submergence-tolerance QTLs.

Keywords

Allelic diversity Indel markers Oryza sativa SSR SUB1 region Submergence-tolerant germplasm 

Notes

Acknowledgments

This work was financially supported by the BAS Submergence Project (LI 12) under the BAS USDA PALS program and Stress-Tolerant Rice for Africa and South Asia (STRASA) Project funded by the Bill & Melinda Gates Foundation (BMGF), and the Global Rice Science Partnership (GRiSP).

Compliance with Ethical Standards

Conflict of interest

The authors declare that they have no conflict of interest.

Human and animal right statement

This research does not involve human participants or animals.

Supplementary material

10722_2015_289_MOESM1_ESM.docx (184 kb)
Supplementary material 1 (DOCX 183 kb)
10722_2015_289_MOESM2_ESM.docx (19 kb)
Supplementary material 2 (DOCX 19 kb)
10722_2015_289_MOESM3_ESM.docx (29 kb)
Supplementary material 3 (DOCX 29 kb)
10722_2015_289_MOESM4_ESM.docx (15 kb)
Supplementary material 4 (DOCX 14 kb)
10722_2015_289_MOESM5_ESM.docx (13 kb)
Supplementary material 5 (DOCX 13 kb)

References

  1. Cavalli-Sfoza LL, Edwards AWF (1967) Phylogenetic analysis: models and estimation procedures. Am J Hum Genet 19:233–257Google Scholar
  2. Chakrabarthi BK, Naravaneni R (2006) SSR marker based DNA fingerprinting and diversity study in rice (Oryza sativa L.). Afr J Biotechnol 5:684–688Google Scholar
  3. Das KK, Panda D, Sarkar RK, Reddy JN, Ismail AM (2009) Submergence tolerance in relation to variable floodwater conditions in rice. Environ Exp Bot 66:425–434CrossRefGoogle Scholar
  4. Hossain MZ, Rasul MG, Ali MS, Iftekharuddaula KM, Mian MAK (2007) Molecular characterization and genetic diversity in fine grain and aromatic landraces of rice using microsatellite markers. Bangladesh J Genet Plant Breed 20:1–10Google Scholar
  5. Iftekharuddaula KM, Newaz MA, Salam MA, Ahmed HU, Mahbub MAA, Septiningsih EM, Collard BCY, Sanchez DL, Pamplona AM, Mackill DJ (2011) Rapid and high-precision marker assisted backcrossing to introgress the SUB1 QTL into BR11, the rainfed lowland rice mega variety of Bangladesh. Euphytica 178:83–97CrossRefGoogle Scholar
  6. IRRI (2002) Standard evaluation system for rice. Int. Rice Res. Inst, Los BañosGoogle Scholar
  7. Jackson MB, Ram PC (2003) Physiological and molecular basis of susceptibility and tolerance of rice plants to complete submergence. Ann Bot 91:227–241CrossRefPubMedPubMedCentralGoogle Scholar
  8. Jain S, Mictchell SE, Jain RK, Kresovich S, McCouch SR (2003) DNA fingerprinting and phylogenetic analysis of Indian aromatic high quality rice germplasm using panels of fluorescent-labeled microsatellite markers. In: Kush GS, Brar DS, Hardy B (eds) Advances in rice genetics. IRRI, Philippines, pp 162–166Google Scholar
  9. Lee KW, Chen PW, Lu CA, Chen S, David Ho TH, Yu SM (2009) Coordinated response to oxygen and sugar deficiency allow rice seedlings to tolerate flooding. Sci Signal 2(91):ra61. doi: 10.1126/scisignal.2000333
  10. Liu K, Muse SV (2005) PowerMarker: integrated analysis environment for genetic marker data. Bioinformatics 21:2128–2129CrossRefPubMedGoogle Scholar
  11. Mohanty HK, Mallik S, Grover A (2000) Prospects of improving flooding tolerance in lowland rice varieties by conventional breeding and genetic engineering. Curr Sci 78:132–137Google Scholar
  12. Neeraja C, Maghirang-Rodriguez R, Pamplona A, Heuer S, Collard B, Septiningsih E, Vergara G, Sanchez D, Xu K, Ismail A, Mackill D (2007) A marker-assisted backcross approach for developing submergence-tolerant rice cultivars. Theor Appl Genet 115:767–776CrossRefPubMedGoogle Scholar
  13. Nei M (1983) Genetic polymorphism and the role of mutation in evolution. In: Koehn PK, Nei M (eds) Evolution of genes and proteins. Sinauer Assoc, Sunderland, pp 165–190Google Scholar
  14. Rohlf F (2002) NTSYS-pc: Numerical taxonomy and multivariate analysis system, 2.1 edn. Department of Ecology and Evolution, State University of New York, Stony BrookGoogle Scholar
  15. Septiningsih EM, Pamplona AM, Sanchez DL, Neeraja CN, Vergara GV, Heuer S, Ismail AM, Mackill DJ (2009) Development of submergence tolerant rice cultivars: the Sub1 locus and beyond. Ann Bot 103:151–160CrossRefPubMedPubMedCentralGoogle Scholar
  16. Septiningsih EM, Sanchez DL, Singh N, Sendon PMD, Pamplona AM, Heuer S, Mackill DJ (2012) Identifying novel QTLs for submergence tolerance in rice cultivars IR72 and Madabaru. Theor Appl Genet 124:867–874CrossRefPubMedGoogle Scholar
  17. Septiningsih EM, Collard BCY, Heuer S, Bailey-Serres J, Ismail AM, Mackill DJ (2013) Applying genomics tools for breeding submergence tolerance in rice. In: Varshney RK, Tuberosa R (eds) Translational genomics for crop breeding, vol 2., Improvement for abiotic stress, quality and yield improvement. Wiley-Blackwell, New York, pp 9–30CrossRefGoogle Scholar
  18. Septiningsih EM, Hidayatun N, Sanchez DL, Nugraha Y, Carandang J, Pamplona AM, Collard BYC, Ismail AM, Mackill DJ (2015) Accelerating the development of new submergence tolerant rice varieties: the case of Ciherang-Sub1 and PSB Rc18-Sub1. Euphytica 202:259–268CrossRefGoogle Scholar
  19. Setter TL, Ellis M, Laureles EV, Ella ES, Senadhira D, Mishra SB, Sarkarung S, Datta S (1997) Physiology and genetics of submergence tolerance in rice. Ann Bot 79:67–77CrossRefGoogle Scholar
  20. Siwach P, Jain S, Saini N, Chowdhury VK, Jain RK (2004) Allelic diversity among basmati and non-basmati long grain indica rice varieties using microsatellite markers. J Plant Biochem Biotechnol 13:25–32CrossRefGoogle Scholar
  21. Thomson MJ, Septiningsih EM, Suwardjo F, Santoso TJ, Silitonga TS, McCouch SR (2007) Genetic diversity analysis of traditional and improved Indonesian rice (Oryza sativa L.) germplasm using microsatellite markers. Theor Appl Genet 114:559–568CrossRefPubMedGoogle Scholar
  22. Toojinda T, Siangliw M, Tragoonrung S, Vanavichit A (2003) Molecular genetics of submergence tolerance in rice: QTL analysis of key traits. Ann Bot 91:243–253CrossRefPubMedPubMedCentralGoogle Scholar
  23. Xu K, Mackill DJ (1996) A major locus for submergence tolerance mapped on rice chromosome 9. Mol Breed 2:219–224CrossRefGoogle Scholar
  24. Xu K, Xu X, Ronald PC, Mackill DJ (2000) A high-resolution linkage map of the vicinity of the rice submergence tolerance locus Sub1. Mol Gen Genet 263:681–689CrossRefPubMedGoogle Scholar
  25. Xu K, Xu X, Fukao T, Canlas P, Maghirang-Rodriguez R, Heuer S, Ismail AM, Bailey-Serres J, Ronald PC, Mackill DJ (2006) Sub1A is an ethylene-response-factor-like gene that confers submergence tolerance to rice. Nature 442:705–708CrossRefPubMedGoogle Scholar
  26. Zheng K, Huang N, Bennett J, Khush GS (1995) PCR-based marker-assisted selection in rice breeding. Int. Rice Res. Inst., Los Baños, pp 1–24Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • Khandakar M. Iftekharuddaula
    • 1
  • Sharmistha Ghosal
    • 1
  • Zennia J. Gonzaga
    • 3
  • Al Amin
    • 1
  • Hirendra N. Barman
    • 1
  • Rumena Yasmeen
    • 1
  • Md. Moinul Haque
    • 2
  • Jerome Carandang
    • 3
  • Bertrand C. Y. Collard
    • 3
  • Endang M. Septiningsih
    • 3
  1. 1.Bangladesh Rice Research InstituteGazipurBangladesh
  2. 2.Sher-e-Bangla Agricultural UniversityDhakaBangladesh
  3. 3.International Rice Research InstituteMetro ManilaPhilippines

Personalised recommendations