Genetic Resources and Crop Evolution

, Volume 63, Issue 3, pp 495–511 | Cite as

Somaclonal variants of taro (Colocasia esculenta Schott) and yam (Dioscorea alata L.) are incorporated into farmers’ varietal portfolios in Vanuatu

  • H. Vandenbroucke
  • P. Mournet
  • H. Vignes
  • H. Chaïr
  • R. Malapa
  • M. F. Duval
  • V. Lebot
Research Article


Taro (Colocasia esculenta) and the greater yam (Dioscorea alata) are staples in Vanuatu. The aim of the present study was to assess the role of somaclonal variations in the varietal diversification of these two clonally propagated crops. The study was conducted in six villages located each on distinct islands of Vanuatu, Melanesia. Overall, 203 varieties of taro and 80 varieties of yam were collected and DArTs were used for analysis. The overall quality of the DArT markers was high for both species. The percentage of polymorphic clones detected on the DArT array was low for taro (3 %) and high (13 %) for yam, with respectively 202 and 499 polymorphic clones. Each variety was characterized by its multilocus genotype based on its DArT presence/absence profile. For taro, the 203 varieties were represented by 126 unique genotypes and 34 distinct multilocus lineages (MLLs). The high number of unique genotypes and the presence of few varieties sharing a clonal origin, generated a high varietal richness index (R = 0.83). For yam, the 80 varieties were represented by seven unique genotypes and 16 MLLs. The low number of unique genotypes and the presence of numerous varieties sharing a clonal origin generated a low varietal richness index (R = 0.26). Possible factors contributing to these contrasting results are discussed. DArT markers provide evidence that somaclonal variants of taro and yam are selected as new varieties. Strategies aiming at strengthening communities’ capacity to adapt to forthcoming changes should consider the introduction of allelic diversity into farmers’ varietal portfolios.


Colocasia esculenta DArT Dioscorea alata On-farm conservation Taro Vanuatu Yam 



This research was financially supported by the French ANR SYSTERRA Project No ANR-10-STRA-007. We would like to thank Corinne Bulé and Floriane Lawac for technical assistance and morphological description of germplasm at VARTC. Our deepest gratitude goes to farmers who took the time to explain the differences between their varieties.


  1. Abraham K (1998) Occurrence of hexaploid males in Dioscorea alata L. Euphytica 99:5–7CrossRefGoogle Scholar
  2. Abraham K, Nair PG (1990) Floral biology and artificial pollination in Dioscorea alata L. Euphytica 48:45–51Google Scholar
  3. Abraham K, Nair PG (1991) Polyploidy and sterility in relation to sex in Dioscorea alata L. (Dioscoreaceae). Genetica 83:93–97CrossRefGoogle Scholar
  4. Ahoussou N, Piquepaille P, Touré B (1982) Analyses biométriques concernant la variabilité potentielle, selon la nature de l’organe de multiplication végétative, chez Dioscorea alata L. (cv. Brazo fuerte). In: Miege, Lyonga (eds). Yams, Ignames. Clarendon Press, Oxford, chap. 9, pp. 89–117, 411pGoogle Scholar
  5. Arnaud-Haond S, Duarte CM, Alberto F, Serrao EA (2007) Standardizing methods to address clonality in population studies. Mol Ecol 16:5115–5139CrossRefPubMedGoogle Scholar
  6. Balbil PK, Yasuhara D, Sakaguchi K, Iwashina T, Irie K, Shiwachi H, Toyohara H, Fujimaki H (2012) Recurring somaclonal variation as a factor of intra-specific diversity observed in Dioscorea alata L. Trop Agric Dev 56(2):71–79Google Scholar
  7. Barrau J (1958) Subsistence agriculture in Melanesia. Honolulu, Bernice P. Bishop Museum, Bulletin 219, p.111Google Scholar
  8. Blanco J, Pascal L, Ramon L, Vandenbroucke H, Carrière S (2013) Agrobiodiversity performance in contrasting island: environments: the case of shifting cultivation in Vanuatu, Pacific. Agric Ecosyst Environ 174:28–39CrossRefGoogle Scholar
  9. Bonnemaison J (1994) The tree and the canoe: history and ethnogeography of Tanna. University of Hawaii Press, Honolulu, 368 pGoogle Scholar
  10. Boster JS (1985) Selection for perceptual distinctiveness: evidence from Aguaruna cultivars of Manihot esculenta. Econ Bot 39:310–325CrossRefGoogle Scholar
  11. Caillon S, Quero-Garcia J, Lescure JP, Lebot V (2006) Nature of taro (Colocasia esculenta (L.) Schott) genetic diversity prevalent in a Pacific Ocean island, Vanua Lava, Vanuatu. Genet Resour Crop Evol 53:1273–1289CrossRefGoogle Scholar
  12. Camus P, Lebot V (2010) On-farm assessment of clonal introduction of root crops diversity in Vanuatu, Melanesia. Exp Agric 46(4):541–559CrossRefGoogle Scholar
  13. Chaïr H, Cornet D, Deu M, Baco N, Agbangla A, Duval MF, Noyer JL (2010) Impact of farmer selection on yam genetic diversity. Conserv Genet 11(6):2255–2265CrossRefGoogle Scholar
  14. Comai L (2000) Genetic and epigenetic interactions in allopolyploid plants. Plant Mol Biol 43:387–399CrossRefPubMedGoogle Scholar
  15. Coursey DG (1982) Yams. In: Simmonds (ed) Evolution of crop plants. Longman, LondonGoogle Scholar
  16. Dorken ME, Eckert CG (2001) Severely reduced sexual reproduction in northern populations of a clonal plant, Decodon verticillatus (Lythraceae). J Ecol 89:339–350CrossRefGoogle Scholar
  17. Douhovnikoff V, Dodd RS (2003) Intra-clonal variation and similarity threshold for identification of clones: application to Salix exigua using AFLP molecular markers. Theor Appl Genet 106:1307–1315PubMedGoogle Scholar
  18. Dumont R, Dansi A, Vernier P, Zoundjihékpon J (2006) Biodiversity and domestication of yams in West Africa: traditional practices leading to Dioscorea rotundata Poir. Quae, Cirad-Ipgri, Nancy, France, 95pGoogle Scholar
  19. Duputié A, David P, Debain C, McKey D (2007) Natural hybridization between a clonally propagated crop, cassava (Manihot esculenta Crantz) and a wild relative in French Guiana. Mol Ecol 16:3025–3038CrossRefPubMedGoogle Scholar
  20. Egesi CN, Pillay M, Asiedu R, Egunjobi JK (2002) Ploidy analysis in water yam, Dioscorea alata L. germplasm. Euphytica 128:225–230CrossRefGoogle Scholar
  21. Elias M, McKey D, Panaud O, Anstett MC, Robert T (2001) Traditional management of cassava morphological and genetic diversity by the Makushi Amerindians (Guyana, South America) perspectives for on-farm conservation of crop genetic resources. Euphytica 20:143–157CrossRefGoogle Scholar
  22. Grivet L, Glaszmann JC, D’Hont A (2006). Molecular evidence of sugarcane evolution and domestication. In: Motley, Zerega and Cross (eds.) Darwin’s harvest: new approaches to the origins, evolution and conservation of crops. Columbia University Press, New York, 390pGoogle Scholar
  23. Heller-Uszynska K, Uszynski G, Huttner E, Evers M, Carlig J, Caig V, Aitken K, Jackson P, Piperidis G, Cox M, Gilmour R, D’Hont A, Butterfield M, Glaszmann JC, Kilian A (2011) Diversity arrays technology effectively reveals DNA polymorphism in a large and complex genome of sugarcane. Mol Breed 28:37–55CrossRefGoogle Scholar
  24. IPGRI (1999) Descriptors for Taro (Colocasia esculenta). IPGRI, Rome, 56 ppGoogle Scholar
  25. IPGRI/IITA (1997) Descriptors for Yam (Dioscorea spp.). IITA, Ibadan, Nigeria/IPGRI, Rome, Italy, 61 ppGoogle Scholar
  26. Irwin SV, Kaufusi P, Banks K, de la Pena R, Cho JJ (1998) Molecular characterization of taro (Colocasia esculenta) using RAPD markers. Euphytica 99:183–189CrossRefGoogle Scholar
  27. Islam I, Kubota AFM, Takagaki C, Kozai T (2002) Sweetpotato growth and yield from plug transplants of different volumes, planted intact or without roots. Crop Sci 42(3):822–826CrossRefGoogle Scholar
  28. Ivancic A, Lebot V (2000) Taro (Colocasia esculenta): genetics and breeding. CIRAD, collection Repères, Montpellier, p 194pGoogle Scholar
  29. Ivancic A, Quero-García J, Lebot V (2004) Genetically controlled branching corms of taro (Colocasia esculenta). N Z J Crop Hortic Sci 32:167–177CrossRefGoogle Scholar
  30. Jaccoud D, Peng K, Feinstein D, Kilian A (2001) Diversity arrays: a solid state technology for sequence information independent genotyping. Nucl Acids Res 29:E25CrossRefPubMedPubMedCentralGoogle Scholar
  31. Karamura D, Karamura E, Tushemereirwe W, Rubaihayo P, Markham R (2010) Somatic mutations and their implications to the conservation strategies of the East African highland bananas (Musa spp.). Acta Hortic 879:615–621CrossRefGoogle Scholar
  32. Kirch PV (2000) On the road of the winds. An archaeological History of the Pacific Islands before European Contact. Berkeley and Los Angeles. University of California Press, Berkeley, Berkeley, 424pGoogle Scholar
  33. Kirch PV (2010) How Chiefs Became Kings. Divine Kingship and the Rise of Archaic States in Ancient Hawai’i. University of California Press, Berkeley 288 ppCrossRefGoogle Scholar
  34. Kreike CM, van Eck HJ, Lebot V (2004) Genetic diversity of taro, Colocasia esculenta (L.) Schott, in Southeast Asia and the Pacific. Theor Appl Genet 109:761–768CrossRefPubMedGoogle Scholar
  35. Lasso E (2008) The importance of setting the right genetic distance threshold for identification of clones using amplified fragment length polymorphism: a case study with five species in the tropical plant genus Piper. Mol Ecol Res 8:74–82CrossRefGoogle Scholar
  36. Lebot V (1992) Genetic vulnerability of Oceania’s traditional crops. Exp Agric 28(3):309–323CrossRefGoogle Scholar
  37. Lebot V (1999) Biomolecular evidence for plant domestication in Sahul. Gen Res Crop Evol 46(6):619–628CrossRefGoogle Scholar
  38. Lebot V (2009) The tropical root and tuber crops: cassava, sweet potato, yams and aroids. CABI Crop Production Science in Horticulture, Cambridge, 420 pGoogle Scholar
  39. Lebot V, Aradhya M (1991) Isozyme variation in taro (Colocasia esculenta (L.) Schott) from Asia and Oceania. Euphytica 56:55–66Google Scholar
  40. Lebot V, Lévesque J (1996) Genetic control of kavalactone chemotypes in Piper methysticum cultivars. Phytochem 43:397–403CrossRefGoogle Scholar
  41. Lebot V, Aradhya M, Manshardt R, Meilleur B (1993) Genetic relationships among cultivated bananas and plantains from Asia and the Pacific. Euphytica 67(3):163–175CrossRefGoogle Scholar
  42. Lebot V, Meilleur B, Manshardt R (1994) Genetic diversity in Eastern Polynesian cultivated bananas. Pac Sci 48(1):16–31Google Scholar
  43. Lebot V, Trilles B, Noyer JL, Modesto J (1998) Genetic relationships between Dioscorea alata L. cultivars. Genet Resour Crop Evol 45(6):499–509CrossRefGoogle Scholar
  44. Lebot V, McKenna D, Johnston E, Zheng QY, McKern D (1999) Morphological, phytochemical, and genetic variation in hawaiian cultivars of Awa (Kava, Piper methysticum, Piperaceae). Econ Bot 53:407–418CrossRefGoogle Scholar
  45. Malapa R, Arnau G, Noyer JL, Lebot V (2005) Genetic diversity of the greater yam (Dioscorea alata L.) and relatedness to D. nummularia Lam. and D. transversa Br. As revealed with AFLP markers. Genet Res Crop Evol 52(7):919–929CrossRefGoogle Scholar
  46. Meirmans PG, van Tienderen PH (2004) GENOTYPE and GENODIVE: two programs for the analysis of genetic diversity of asexual organisms. Mol Ecol Notes 4(4):792–794CrossRefGoogle Scholar
  47. Olhoft PM, Philipps RL (1999) Genetic and epigenetic instability in tissue culture and regenerated progenies. In: Lerner HR (ed) Plant responses to environment stresses: from phytohormones to genome organization. Dekker, New York, pp 111–148Google Scholar
  48. Perrier X, Jacquemoud-Collet J (2006) DARwin software, version 5.0 for Windows. Accessed 20 Apr 2014
  49. Perrier X, De Langhe E, Donohue M, Lentfer C, Vrydaghs L, Bakry F, Carreel F, Hippolyte I, Horry JP, Jenny C, Lebot V, Risterucci AM, Tomekpe K, Doutreleponte H, Ball T, Manwaring T, de Maret P, Denham T (2011) Multidisciplinary perspectives on banana (Musa spp.) domestication. PNAS (US) 108(28):11311–11318CrossRefGoogle Scholar
  50. Pujol B, David P, McKey D (2005) Microevolution in agricultural environments: how a traditional Amerindian farming practice favours heterozygosity in cassava (Manihot esculenta Crantz, Euphorbiaceae). Ecol Lett 8(2):138–147CrossRefGoogle Scholar
  51. Quero-García J, Courtois B, Ivancic A, Letourmy P, Risterucci AM, Noyer JL, Feldmann P, Lebot V (2006) First genetic maps and QTL studies of yield traits of taro (Colocasia esculenta (L.) Schott). Euphytica 151:187–199CrossRefGoogle Scholar
  52. Quiros CF, Ortega R, van Raamsdock L, Herrera-Montoya M, Cisneros P, Schmidt E, Brush SB (1992) Increase of potato genetic resources in their centre of genetic diversity: the role of natural outcrossing and selection by the Andean farmer. Genet Resour Crop Evol 39:107–112CrossRefGoogle Scholar
  53. Ragone D (1991) Ethnobotany of breadfruit in Polynesia. In: Cox PA, Banack SA (eds) Islands, plants and polynesians: an introduction to polynesian ethnobotany. Dioscorides Press, Portland, Oregon, pp 203–220Google Scholar
  54. Risterucci AM, Hippolyte I, Perrier X et al (2009) Development and assessment of diversity arrays technology for high-throughput DNA analyses in Musa. Theor Appl Genet 119:1093–1103CrossRefPubMedGoogle Scholar
  55. Roullier C, Kambouo R, Paofa J, McKey D, Lebot V (2012) On the origin of sweet potato (Ipomoea batatas (L.) Lam.) genetic diversity in New Guinea, a secondary centre of diversity. Heredity 110(6):594–604CrossRefGoogle Scholar
  56. Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetics trees. Mol Biol Evol 4(4):406–425PubMedGoogle Scholar
  57. Sardos J, Rodier-Goud M, Dambier D, Malapa R, Noyer JL, Lebot V (2009) Evidence for spontaneous polyploidization in cassava Manihot esculenta Crantz. Plant Syst Evol 283(3–4):203–209CrossRefGoogle Scholar
  58. Sardos J, Noyer JL, Malapa R, Bouchet S, Lebot V (2012) Genetic diversity of taro (Colocasia esculenta (L.) Schott) in vanuatu (oceania): an appraisal of the distribution of allelic diversity (dad) with ssr markers. Genet Resour Crop Evol 59(5):805–820CrossRefGoogle Scholar
  59. Scarcelli N, Tostain S, Vigouroux Y, Agbangla C, Dainou O, Pham JL (2006) Farmers’ use of wild relative and sexual reproduction in a vegetatively propagated crop: the case of yam in Benin. Mol Ecol 15(9):2421–2431CrossRefPubMedGoogle Scholar
  60. Scarcelli N, Tostain S, Vigouroux Y, Luong V, Baco MN, Agbangla C, Daïnou O, Pham JL (2011) Genetic structure of farmer-managed varieties in clonally-propagated crops. Genetica 139:1055–1064CrossRefPubMedGoogle Scholar
  61. Schwaergle KE, McIntyre H, Swingley C (2000) Quantitative genetics and the persistence of environmental effects in clonally propagated organisms. Evolution 54:452–461CrossRefGoogle Scholar
  62. Seelenfreund D, Pina R, KY Ho, Lobos S, Moncada X, Seelenfreund A (2011) Molecular analysis of Broussonetia papyrifera (L.) Vent. (Magnoliophyta: Urticales) from the Pacific, based on ribosomal sequences of nuclear DNA. NZ J Bot 49(3):413–420CrossRefGoogle Scholar
  63. Sokal RR, Michener CD (1958) A statistical method for evaluating systematic relationships. Univ Kansa 38–2(22):30pGoogle Scholar
  64. Valladares F, Gianolli E, Gomez JW (2007) Ecological limits to plant phenotypic plasticity. New Physiol 176(4):749–763CrossRefGoogle Scholar
  65. Walter A, Lebot V (2007) Gardens of Oceania. ACIAR Monograph No. 122. Canberra, Australia, 326 ppGoogle Scholar
  66. Wenzl P, Carling J, Kudrna D, Jaccoud D, Huttner E, Kleinhofs A, Kilian A (2004) Diversity arrays technology (dart) for whole-genome profiling of barley. PNAS 101:9915–9920CrossRefPubMedPubMedCentralGoogle Scholar
  67. Zerega NJC, Ragone D, Motley TJ (2004) Complex origins of breadfruit (Artocarpus altilis, Moraceae): implications for human migrations in Oceania. Am J Bot 91(5):760–766CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • H. Vandenbroucke
    • 1
  • P. Mournet
    • 1
  • H. Vignes
    • 1
  • H. Chaïr
    • 1
  • R. Malapa
    • 1
  • M. F. Duval
    • 1
  • V. Lebot
    • 1
  1. 1.CIRAD, UMR AGAPPort-VilaVanuatu

Personalised recommendations