Advertisement

Genetic Resources and Crop Evolution

, Volume 63, Issue 2, pp 221–234 | Cite as

Combining conservative and variable markers to infer the evolutionary history of Prunus subgen. Amygdalus s.l. under domestication

  • Malou Delplancke
  • Mariana YazbekEmail author
  • Nils Arrigo
  • Anahí Espíndola
  • Helene Joly
  • Nadir Alvarez
Research Article

Abstract

The genus Prunus L. is large and economically important. However, phylogenetic relationships within Prunus at low taxonomic level, particularly in the subgenus Amygdalus L. s.l., remain poorly investigated. This paper attempts to document the evolutionary history of Amygdalus s.l. and establishes a temporal framework, by assembling molecular data from conservative and variable molecular markers. The nuclear s6pdh gene in combination with the plastid trnSG spacer are analyzed with bayesian and maximum likelihood methods. Since previous phylogenetic analysis with these markers lacked resolution, we additionally analyzed 13 nuclear SSR loci with the δµ2 distance, followed by an unweighted pair group method using arithmetic averages algorithm. Our phylogenetic analysis with both sequence and SSR loci confirms the split between sections Amygdalus and Persica, comprising almonds and peaches, respectively. This result is in agreement with biogeographic data showing that each of the two sections is naturally distributed on each side of the Central Asian Massif chain. Using coalescent based estimations, divergence times between the two sections strongly varied when considering sequence data only or combined with SSR. The sequence-only based estimate (5 million years ago) was congruent with the Central Asian Massif orogeny and subsequent climate change. Given the low level of differentiation within the two sections using both marker types, the utility of combining microsatellites and data sequences to address phylogenetic relationships at low taxonomic level within Amygdalus is discussed. The recent evolutionary histories of almond and peach are discussed in view of the domestication processes that arose in these two phenotypically-diverging gene pools: almonds and peaches were domesticated from the Amygdalus s.s. and Persica sections, respectively. Such economically important crops may serve as good model to study divergent domestication process in close genetic pool.

Keywords

Amygdalus Almonds Domestication Phylogeny SSR S6pdh 

Notes

Acknowledgments

The present study was funded by the “FruitMed Project”, distributed by the French Foundation Agropolis. N. Arrigo, N. Alvarez, A. Espíndola were funded by the Swiss National Science Foundation (Grant No. 132747, and an Ambizione fellowship PZ00P3_126624). Sequencing was done in Cornell University Life Sciences Core Laboratories Center (CLC) and genotyping in the ‘Service Commun de Marqueurs Génétiques en Ecologie’ of the UMR CEFE.

Supplementary material

10722_2015_242_MOESM1_ESM.xls (19 kb)
Supplementary material 1 (XLS 19 kb)
10722_2015_242_MOESM2_ESM.pdf (98 kb)
Supplementary material 2 (PDF 98 kb)
10722_2015_242_MOESM3_ESM.pdf (100 kb)
Supplementary material 3 (PDF 100 kb)
10722_2015_242_MOESM4_ESM.xls (26 kb)
Supplementary material 4 (XLS 26 kb)

References

  1. Akaike H (1973) Maximum likelihood identification of gaussian autoregressive moving average models. Biometrika 60:255–265CrossRefGoogle Scholar
  2. Arus P, Gardiner S (2007) Genomics for improvement of Rosaceae temperate tree fruit genomics-assisted crop improvement. Springer, NetherlandsGoogle Scholar
  3. Bortiri E, Oh SH et al (2001) Phylogeny and systematics of Prunus (Rosaceae) as determined by sequence analysis of ITS and the chloroplast trnL-trnF spacer DNA. Syst Bot 26:797–807Google Scholar
  4. Bortiri E, Oh SH, Gao FY, Potter D (2002) The phylogenetic utility of nucleotide sequences of sorbitol 6-phosphate dehydrogenase in Prunus (Rosaceae). Am J Bot 89:1697–1708PubMedCrossRefGoogle Scholar
  5. Browicz K, Zohary D (1996) The genus Amygdalus L (Rosaceae): species relationships, distribution and evolution under domestication. Genet Resour Crop Evol 43:229–247CrossRefGoogle Scholar
  6. Bruford MW, Wayne RK (1993) Microsatellites and their application to population genetic studies. Curr Opin Genet Dev 3:939–943PubMedCrossRefGoogle Scholar
  7. Cipriani G, Lot G et al (1999) AC/GT and AG/CT microsatellite repeats in peach [Prunus persica (L.) Batsch]: isolation, characterisation and cross-species amplification in Prunus. Theor Appl Genet 99:65–72CrossRefGoogle Scholar
  8. Delplancke M (2011) Histoire évolutive de l’amandier cultivé (Prunus dulcis) en Méditerranée: regards croisés sur la domestication, dialogue entre la biologie et l’ethnobiologie, Biologie des populations. Université Montpellier 2, MontpellierGoogle Scholar
  9. Delplancke M, Alvarez N et al (2012) Geneflow among wild and domesticated almond species: insights from chloroplast and nuclear markers. Evol Appl 5:317–329PubMedPubMedCentralCrossRefGoogle Scholar
  10. Denisov VP (1988) Almond genetic resources in the USSR and their use in production and breeding. Acta Hortic 224:299–306CrossRefGoogle Scholar
  11. Dicenta F, Ortega E, Martinez-Gomez P (2007) Use of recessive homozygous genotypes to assess genetic control of kernel bitterness in almond. Euphytica 153:221–225CrossRefGoogle Scholar
  12. Dieringer D, Schlotterer C (2003) Microsatellite analyser (MSA): a platform independent analysis tool for large microsatellite data sets. Mol Ecol Notes 3:167–169CrossRefGoogle Scholar
  13. Dirlewanger EP, Cosson P et al (2002) Development of microsatellite markers in peach [Prunus persica (L.) Batsch] and their use in genetic diversity analysis in peach and sweet cherry (Prunus avium L.). Theor Appl Genet 105:127–138PubMedCrossRefGoogle Scholar
  14. Drummond AJ, Rambaut A (2007) BEAST: Bayesian evolutionary analysis by sampling trees. Evol Biol 7:214Google Scholar
  15. Edgar RC (2004) MUSCLE: a multiple sequence alignment method with reduced time and space complexity. Bioinformatics 5:113PubMedPubMedCentralGoogle Scholar
  16. Food and Agricultural Organization (2008) FAOSTAT database on agriculture. Food and Agriculture Organization of the United Nations, RomeGoogle Scholar
  17. Felsenstein J (1995) PHYLIP (phylogeny inference package). University of Washington, SeattleGoogle Scholar
  18. Goldstein DB, Pollock DD (1997) Launching microsatellites: a review of mutation processes and methods of phylogenetic inference. J Hered 88:335–342PubMedCrossRefGoogle Scholar
  19. Goldstein DB, Linares AR, Cavalli-Sforza LL, Feldman MW (1995a) An evaluation of genetic distances for use with microsatellite loci. Genetics 139:463–471PubMedPubMedCentralGoogle Scholar
  20. Goldstein DB, Linares AR, Cavalli-Sforza LL, Feldman MW (1995b) Genetic absolute dating based on microsatellites and the origin of modern humans. PNAS 92(15):6723–6727PubMedPubMedCentralCrossRefGoogle Scholar
  21. Grasselly C (1976) Origine et évolution de l’amandier cultivé. Options Méditerr 32:45–49Google Scholar
  22. Grasselly C (1977) Réflexions sur les caractéristiques des espèces sauvages d’amandier et sur leur utilisation éventuelle dans des programmes d’amélioration génétique. 3e Colloque du groupe de recherche et d’étude méditerranéen pour le pistachier et l’amandier. Bari, Italy, GREMPA, CIHEAM, pp 70–76Google Scholar
  23. Gupta PK, Balyan IS, Sharma PC, Ramesh B (1996) Microsatellites in plants: a new class of molecular markers. Curr Sci India 70:45–54Google Scholar
  24. Heppner J (1923) The factor for bitterness in the sweet almond. Genetics 8:390–392PubMedPubMedCentralGoogle Scholar
  25. Hey J (2010) The divergence of chimpanzee species and subspecies as revealed in multipopulation isolation-with-migration analyses. Mol Biol Evol 27:921–933Google Scholar
  26. Hey J, Nielsen R (2004) Multilocus methods for estimating population sizes, migration rates and divergence time, with applications to the divergence of Drosophila pseudoobscura and D. persimilis. Genetics 167:747–760PubMedPubMedCentralCrossRefGoogle Scholar
  27. Hey J, Nielsen R (2007) Integration within the Felsenstein equation for improved Markov chain Monte Carlo methods in population genetics. PNAS 104:2785–2790PubMedPubMedCentralCrossRefGoogle Scholar
  28. Kalinowski ST (2005) Do polymorphic loci require large sample sizes to estimate genetic distances? Heredity 94:33–36PubMedCrossRefGoogle Scholar
  29. Khadari B, Grout C, Santoni S, Kjellberg F (2005) Contrasted genetic diversity and differentiation among Mediterranean populations of Ficus carica L.: a study using mtDNA RFLP. Genet Resour Crop Evol 52:97–109CrossRefGoogle Scholar
  30. Kluge AG (1989) A concern for evidence and phylogenetic hypothesis of relationships among Epicrates. Syst Zool 38:7–25CrossRefGoogle Scholar
  31. Layne D, Bass D (2008) The peach: botany, production and uses. CABI, LondonGoogle Scholar
  32. Lee S, Wen J (2001) A phylogenetic analysis of Prunus and the Amygdaloideae (Rosaceae) using ITS sequences of nuclear ribosomal DNA. Am J Bot 88:150–160PubMedCrossRefGoogle Scholar
  33. Marriage TN, Hudman S et al (2009) Direct estimation of the mutation rate at dinucleotide microsatellite loci in Arabidopsis thaliana (Brassicaceae). Heredity 103:310–317PubMedPubMedCentralCrossRefGoogle Scholar
  34. Martinez-Gomez P, Arulsekar S, Potter D, Gradziel TM (2003) Relationships among peach, almond, and related species as detected by simple sequence repeat markers. J Am Soc Hortic Sci 128:667–671Google Scholar
  35. Martinoli D, Jacomet S (2004) Identifying endocarp remains and exploring their use at Epipalaeolithic Okuzini in southwest Anatolia, Turkey. Veg Hist Archaeobot 13:45–54CrossRefGoogle Scholar
  36. Miller AJ, Gross BL (2011) From forest to field: perennial fruit crop domestication. Am J Bot 98:1389–1414PubMedCrossRefGoogle Scholar
  37. Morrell PL, Clegg MT (2007) Genetic evidence for a second domestication of barley (Hordeum vulgare) east of the Fertile Crescent. PNAS 104:3289–3294PubMedPubMedCentralCrossRefGoogle Scholar
  38. Morrison DA (2006) Multiple sequence alignment for phylogenetic purposes. Aust Syst Bot 19:479–539CrossRefGoogle Scholar
  39. Mowrey BD, Werner DJ (1990) Phylogenetic relationships among species of Prunus as inferred by isozyme markers. Theor Appl Genet 80:129–133PubMedCrossRefGoogle Scholar
  40. Negri P, Bassi D, Magnanini E, Rizzo M, Bartolozzi F (2008) Bitterness inheritance in apricot (P. armeniaca L.) seeds. Tree Genet Genomes 4:767–776CrossRefGoogle Scholar
  41. Nei M (1978) Theory of genetic distance and evolution of human races. Jpn J Human Genet 23:341–369CrossRefGoogle Scholar
  42. Nylander JA, Ronquist F, Huelsenbeck JP, Nieves-Aldrey J (2004) Bayesian phylogenetic analysis of combined data. Syst Biol 53:47–67PubMedCrossRefGoogle Scholar
  43. Ochieng JW, Steane DA et al (2007) Microsatellites retain phylogenetic signals across genera in eucalypts (Myrtaceae). Genet Mol Biol 30:1125–1134CrossRefGoogle Scholar
  44. Ossowski S, Schneeberger K et al (2010) The rate and molecular spectrum of spontaneous mutations in Arabidopsis thaliana. Science 327(5961):92–94PubMedCrossRefGoogle Scholar
  45. Peakall R, Gilmore S, Keys W, Morgante M, Rafalski A (1998) Cross-species amplification of soybean (Glycine max) simple sequence repeats (SSRs) within the genus and other legume genera: implications for the transferability of SSRs in plants. Mol Biol Evol 15:1275–1287PubMedCrossRefGoogle Scholar
  46. Potter D, Eriksson T et al (2007) Phylogeny and classification of Rosaceae. Plant Syst Evol 266:5–43. doi: 10.1007/s00606-007-0539-9
  47. Rambault A (2006) Figure tree. http://tree.bio.ed.ac.uk/software/figtree
  48. Rehder A (1940) A manual of cultivated trees and shrubs hardy in North America exclusive of the subtropical and warmer temperate regions, 2nd edn. Macmillan, New YorkGoogle Scholar
  49. Richard M, Thorpe RS (2001) Can microsatellites be used to infer phylogenies? Evidence from population affinities of the Western Canary Island lizard (Gallotia galloti). Mol Phylogenet Evol 20:351–360PubMedCrossRefGoogle Scholar
  50. Ronquist F, Huelsenbeck JP (2003) MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19:1572–1574PubMedCrossRefGoogle Scholar
  51. Ruzzante DE (1998) A comparison of several measures of genetic distance and population structure with microsatellite data: bias and sampling variance. Can J Fish Aquat Sci 55:1–14CrossRefGoogle Scholar
  52. Shaw J, Lickey EB, Schilling EE, Small RL (2007) Comparison of whole chloroplast genome sequences to choose noncoding regions for phylogenetic studies in angiosperms: the tortoise and the hare III. Am J Bot 94:275–288PubMedCrossRefGoogle Scholar
  53. Socias i Company, Felipe AJ (1988) Self-compatibility in almond: transmission and recent advances. Acta Hortic 224:307–317CrossRefGoogle Scholar
  54. Stamatakis A (2006) RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22:2688–2690PubMedCrossRefGoogle Scholar
  55. Strasburg JL, Rieseberg LH (2010) How robust are “Isolation with Migration” analyses to violations of the im model? A simulation study. Mol Biol Evol 27:297–310PubMedPubMedCentralCrossRefGoogle Scholar
  56. Sun DG, An ZS, Shaw J, Bloemendal J, Youbin S (1998) Magnetostratigraphy and palaeoclimatic significance of late tertiary aeolian sequences in the Chinese Loess Plateau. Geophys J Int 134:207–212CrossRefGoogle Scholar
  57. Takezaki N, Nei M (1996) Genetic distances and reconstruction of phylogenetic trees from microsatellite DNA. Genetics 144:389–399PubMedPubMedCentralGoogle Scholar
  58. Testolin R, Marrazzo T et al (2000) Microsatellite DNA in peach (Prunus persica (L.) Batsch) and its use in fingerprinting and testing the genetic origin of cultivars. Genome 43:512–520PubMedCrossRefGoogle Scholar
  59. Vavilov NI, Dorofeev VF (1992) Origin and geography of cultivated plants. Cambridge University Press, CambridgeGoogle Scholar
  60. Vigouroux Y, Jaqueth JS et al (2002) Rate and pattern of mutation at microsatellite loci in maize. Mol Biol Evol 19:1251–1260PubMedCrossRefGoogle Scholar
  61. Wakeley J, Nielsen R, Liu-Cordero SN, Ardlie K (2001) The discovery of single-nucleotide polymorphisms- and inferences about human demographic history. Am J Hum Genet 69:1332–1347PubMedPubMedCentralCrossRefGoogle Scholar
  62. Watkins R (1976) Cherry, plum, peach, apricot and almond. In: Smartt J, Simmonds N (eds) Evolution of crop plants. S. NW. Longman, London, pp 242–247Google Scholar
  63. Weiss E, Kislev ME, Hartmann A (2006) Autonomous cultivation before domestication. Science 312(5780):1608–1610PubMedCrossRefGoogle Scholar
  64. Wen J, Berggren ST et al (2008) Phylogenetic inferences in Prunus (Rosaceae) using chloroplast ndhF and nuclear ribosomal ITS sequences. J Syst Evol 46:322–332Google Scholar
  65. Whitton J, Rieseberg LH, Ungerer MC (1997) Microsatellite loci are not conserved across the Asteraceae. Mol Biol Evol 14:204–209PubMedCrossRefGoogle Scholar
  66. Wilkinson M, McInerney J, Hirt RP, Foster PG, Embley TM (2007) Of clades and clans: terms for phylogenetic relationships in unrooted trees. Trends Ecol Evol 22:114–115PubMedCrossRefGoogle Scholar
  67. Willcox G, Fornite S, Herveux L (2008) Early Holocene cultivation before domestication in northern Syria. Veg Hist Archaeobot 17:313–325CrossRefGoogle Scholar
  68. Willcox G, Buxo R, Herveux L (2009) Late Pleistocene and early Holocene climate and the beginnings of cultivation in northern Syria. Holocene 19:151–158CrossRefGoogle Scholar
  69. Wolfe KH, Li WH, Sharp PM (1987) Rates of nucleotide substitution vary greatly among plant mitochondrial, chloroplast, and nuclear DNAs. PNAS 84(24):9054–9058PubMedPubMedCentralCrossRefGoogle Scholar
  70. Won YJ, Hey J (2005) Divergence population genetics of chimpanzees. Mol Biol Evol 22:297–307PubMedCrossRefGoogle Scholar
  71. Yazbek M (2010) Systematics of Prunus subgenus Amygdalus: monograph and phylogeny. Cornell University, IthacaGoogle Scholar
  72. Yazbek M, Oh SH (2013) Peaches and almonds: phylogeny of Prunus subg. Amygdalus (Rosaceae) based on DNA sequences and morphology. Plant Syst Evol 299:1403–1418CrossRefGoogle Scholar
  73. Zeder MA (2006) Documenting domestication: new genetic and archaeological paradigms. University of California Press, OaklandGoogle Scholar
  74. Zeinalabedini M, Khayam-Nekoui M, Grigorian V, Gradziel TM, Martinez-Gomez P (2010) The origin and dissemination of the cultivated almond as determined by nuclear and chloroplast SSR marker analysis. Sci Hortic 125:593–601CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • Malou Delplancke
    • 1
  • Mariana Yazbek
    • 2
    Email author
  • Nils Arrigo
    • 3
  • Anahí Espíndola
    • 3
  • Helene Joly
    • 5
  • Nadir Alvarez
    • 4
  1. 1.Université Montpellier 2, Centre d’Ecologie Fonctionnelle et Evolutive UMR 5175Montpellier Cedex 5France
  2. 2.Genetic Resources Section, Biodiversity and Integrated Gene Management ProgramInternational Center for Agricultural Research in Dry Areas (ICARDA)BeirutLebanon
  3. 3.Department of Ecology and Evolutionary BiologyUniversity of ArizonaTucsonUSA
  4. 4.Department of Ecology and Evolution, Faculty of Biology and MedicineUniversity of LausanneLausanneSwitzerland
  5. 5.CIRAD, UPR 67Centre d’Ecologie Fonctionnelle et Evolutive UMR 5175Montpellier Cedex 5France

Personalised recommendations