Genetic Resources and Crop Evolution

, Volume 62, Issue 8, pp 1159–1179 | Cite as

Phenetic characterization of Citrullus spp. (Cucurbitaceae) and differentiation of egusi-type (C. mucosospermus)

  • Enoch G. Achigan-DakoEmail author
  • Edgar S. Avohou
  • Come Linsoussi
  • Adam Ahanchede
  • Raymond S. Vodouhe
  • Frank R. Blattner
Research Article


Breeding of Citrullus spp. for various benefits has continuously raised interest particularly for economically important crops. However, the interspecific variations within the genus have remained obscure in many regards and the multitude of names for taxa and subtaxa eludes Citrullus breeders. In the absence of clear taxonomic differentiation, molecular analysis of phenotypes did not help understand the complexity of this genus until recently. In this study we carried out a phenetic characterization of a world collection of 213 accessions using 22 agro-morphological descriptors in field trials conducted in two locations and during two consecutive years. Multivariate analyses confirmed high morphological variation in Citrullus spp. and highlight C. mucosospermus as a homogenous group separated from other Citrullus species. This differentiation of egusi-type melon will help leverage breeding and conservation purposes as C. lanatus represent very important economic crops in the world. Based on our findings we conclude that our knowledge of the relationships between genetic variations and phenotypic traits and the determinism of morphological variations among and within Citrullus need to be further deepened.


Breeding prospects Citrullus spp. Egusi Morphological markers Taxonomy 



This study was financially supported by the International Foundation for Science (IFS) under research Grant C/3709-2, the Vavilov–Frankel Fellowship under Grant CONT/08/136/RF, and the National Agricultural Research Institute of Benin (INRAB). We thank the United States Department of Agriculture (USDA) and the Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) for providing accessions for this study. We acknowledge contribution and technical support from Alphonse Kouke and Christina Koch.

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

10722_2015_220_MOESM1_ESM.docx (50 kb)
Supplementary material 1 (DOCX 49 kb)


  1. Achigan Dako EG, Fagbemissi R, Avohou HT, Vodouhe RS, Coulibaly O, Ahanchede A (2008a) Importance and practices of egusi crops (Citrullus lanatus (Thunb.) Matsum. & Nakai, Cucumeropsis mannii Naudin and Lagenaria siceraria (Molina) Standl. cv.’Aklamkpa’) in sociolinguistic areas in Benin. Biotechnol Agron Soc Environ 12(4):393–403Google Scholar
  2. Achigan Dako EG, Fuchs J, Ahanchede A, Blattner FR (2008b) Flow cytometric analysis in Lagenaria siceraria (Cucurbitaceae) indicates correlation of genome size with usage types and growing elevation. Plant Syst Evol 276(1–2):9–19CrossRefGoogle Scholar
  3. Achigan Dako EG, Vodouhe SR, Sangare A (2008c) Caractérisation morphologique des cultivars locaux de Lagenaria siceraria (Cucurbitaceae) collectés au Bénin et au Togo. Belg J Bot 21–38Google Scholar
  4. Adjakidjè V (2006) Cucurbitaceae. In: Akoègninou A, van der Burg WJ, van der Maesen LJG et al (eds) Flore du Bénin. Backhuys Publishers, Cotonou and Wageningen, pp 520–534Google Scholar
  5. Adjoumani K, Kouonon LC, Akaffou DS, Dje Y (2012) Diversité variétale chez l’espèce Citrullus lanatus (Matsumura et Nakai) et opportunités d’amélioration génétique des cultivars. Eur J Sci Res 67(4):564–579Google Scholar
  6. Akoègninou A, vander Burg WJ, vander Maesen JJG, Adjakidjè V, Essou JP, Sinsin B, Yédomonhan H (2006) Flore du Bénin. Backhuys Publishers, Cotonou and WageningenGoogle Scholar
  7. Burkill HM (1995) The useful plants of west tropical Africa, vols. 1–3, 2nd edn. Royal Botanic Gardens, KewGoogle Scholar
  8. Chomicki G, Renner SS (2014) Watermelon origin solved with molecular phylogenetics including Linnaean material: another example of museomics. New Phytol. doi: 10.1111/nph.13163 Google Scholar
  9. Dane F, Lang P, Bakhtiyarova R (2004) Comparative analysis of chloroplast DNA variability in wild and cultivated Citrullus species. Theor Appl Genet 108(5):958–966CrossRefPubMedGoogle Scholar
  10. Dje Y, Tahi C, Bi A, Baudoin J-P, Bertin P (2010) Use of ISSR markers to assess genetic diversity of African edible seeded Citrullus lanatus landraces. Sci Hortic 124(2):159–164CrossRefGoogle Scholar
  11. Fursa TB (1972) K sistematike roda Citrullus Schrad. [On the taxonomy of genus Citrullus Schrad.]. Botanicheskii Zhurnal 57:31–41Google Scholar
  12. Fursa TB (1981) Intraspecific classification of water-melon under cultivation. Die Kulturpflanze 29(1):297–300CrossRefGoogle Scholar
  13. Fursa TB (1983) Novyi vid arbuza Citrullus mucosospermus (Fursa) Fursa (A new species of watermelon Citrullus mucosospermus (Fursa) Fursa). Trudy po prikladnoi botanike genetike i selektsii 81:108–112Google Scholar
  14. Gusmini G, Wehner TC (2005) Foundations of yield improvement in watermelon. Crop Sci 45(1):141–146Google Scholar
  15. Gusmini G, Wehner T, Jarret R (2004) Inheritance of egusi seed type in watermelon. J Hered 95(3):268–270CrossRefPubMedGoogle Scholar
  16. Hammer K, Gladis T (2014) Notes on infraspecific nomenclature and classifications of cultivated plants in Compositae, Cruciferae, Cucurbitaceae, Gramineae (with a remark on Triticum dicoccon Schrank) and Leguminosae. Genet Resour Crop Evol 61:1555–1567CrossRefGoogle Scholar
  17. Hill T, Lewicki P (2006) Statistics: methods and applications: a comprehensive reference for science, industry, and data mining. StatSoft Inc, TulsaGoogle Scholar
  18. Husson F, Josse J, Le S, Mazet J (2013) FactoMineR: multivariate exploratory data analysis and data mining with R. R Packag Vers 1:102–123Google Scholar
  19. Hutchinson J, Dalziel JM (1954) Flora of west tropical Africa. Vol. 1, Pt. 1. Flora of West tropical Africa, vol 1, Pt 1 (Edn 2)Google Scholar
  20. IPGRI (2001) The design and analysis of evaluation trials of genetic resources collctions. A guide for genebank managers. IPGRI Technical Bulletin No. 4. International Plant Genetic Resources Institute, Rome, ItalyGoogle Scholar
  21. Jarret R, Merrick L, Holms T, Evans J, Aradhya M (1997) Simple sequence repeats in watermelon (Citrullus lanatus (Thunb.) Matsum. & Nakai). Genome 40(4):433–441CrossRefPubMedGoogle Scholar
  22. Jeffrey C (2001) Cucurbitaceae. In: Hanelt P (ed) Mansfeld’s encyclopedia of agricultural and horticultural crops, 3. Springer, Berlin, pp 1510–1557Google Scholar
  23. Laghetti G, Hammer K (2007) The Corsican citron melon (Citrullus lanatus (Thunb.) Matsum. et Nakai subsp. lanatus var. citroides (Bailey) Mansf. ex Greb.) a traditional and neglected crop. Genet Resour Crop Evol 54(4):913–916Google Scholar
  24. Levi A, Thomas CE (2005) Polymorphisms among chloroplast and mitochondrial genomes of Citrullus species and subspecies. Genet Resour Crop Evol 52(5):609–617CrossRefGoogle Scholar
  25. Levi A, Thomas CE, Keinath AP, Wehner TC (2001a) Genetic diversity among watermelon (Citrullus lanatus and Citrullus colocynthis) accessions. Genet Resour Crop Evol 48(6):559–566CrossRefGoogle Scholar
  26. Levi A, Thomas CE, Wehner TC, Zhang X (2001b) Low genetic diversity indicates the need to broaden the genetic base of cultivated watermelon. HortScience 36(6):1096–1101Google Scholar
  27. Levi A, Wechter WP, Harris KR, Davis AR, Fei Z (2010) High-frequency oligonucleotides in watermelon expressed sequenced tag-unigenes are useful in producing polymorphic polymerase chain reaction markers among watermelon genotypes. J Am Soc Hortic Sci 135(4):369–378Google Scholar
  28. Levi A, Thies JA, Wechter WP, Harrison HF, Simmons AM, Reddy UK, Nimmakayala P, Fei Z (2013) High frequency oligonucleotides: targeting active gene (HFO–TAG) markers revealed wide genetic diversity among Citrullus spp. accessions useful for enhancing disease or pest resistance in watermelon cultivars. Genet Resour Crop Evol 60(2):427–440CrossRefGoogle Scholar
  29. Maggs-Kölling GL, Madsen S, Christiansen JL (2000) A phenetic analysis of morphological variation in Citrullus lanatus in Namibia. Genet Resour Crop Evol 47(4):385–393CrossRefGoogle Scholar
  30. Malepszy S, Niemirowicz-Szczytt K (1991) Sex determination in cucumber Cucumis sativus as a model system for molecular biology. Plant Sci 80(1):39–47CrossRefGoogle Scholar
  31. Minsart L-A, Djè Y, Baudoin J-P, Jacquemart A-L, Bertin P (2011) Set up of simple sequence repeat markers and first investigation of the genetic diversity of West-African watermelon (Citrullus lanatus ssp. vulgaris oleaginous type). Genet Resour Crop Evol 58(6):805–814Google Scholar
  32. Mujaju C, Sehic J, Werlemark G, Garkava-Gustavsson L, Fatih M, Nybom H (2010) Genetic diversity in watermelon (Citrullus lanatus) landraces from Zimbabwe revealed by RAPD and SSR markers. Hereditas 147(4):142–153CrossRefPubMedGoogle Scholar
  33. Mujaju C, Zborowska A, Werlemark G, Garkava-Gustavssson L, Andersen SB, Nybom H (2011) Genetic diversity among and within watermelon (Citrullus lanatus) landraces in Southern Africa. J Hortic Sci Biotechnol 86:353–358Google Scholar
  34. Mujaju C, Jasna S, Hilde N (2013) Assessment of EST-SSR markers for evaluating genetic diversity in watermelon accessions from Zimbabwe. American Journal of Plant Sciences 4:1448CrossRefGoogle Scholar
  35. Nantoumé A, Andersen S, Jensen B (2013) Genetic differentiation of watermelon landrace types in Mali revealed by microsatellite (SSR) markers. Genet Resour Crop Evol 1–13Google Scholar
  36. Naudin C (1859) Revue des Cucurbitacées cultivées au museum. Ann Sci Nat Ser 4 Bot 12:79–164Google Scholar
  37. Navot N, Zamir D (1987) Isozyme and seed protein phylogeny of the genus Citrullus (Cucurbitaceae). Plant Syst Evol 156(1–2):61–67CrossRefGoogle Scholar
  38. Nesom GL (2011) Toward consistency of taxonomic rank in wild/domesticated Cucurbitaceae. Phytoneuron 13:1–33Google Scholar
  39. Nimmakayala P, Vajja G, Gist RA, Tomason YR, Levi A, Reddy UK (2011) Effect of DNA methylation on molecular diversity of watermelon heirlooms and stability of methylation specific polymorphisms across the genealogies. Euphytica 177(1):79–89CrossRefGoogle Scholar
  40. Pike L, Mulkey W (1970) Use of hermaphroditic cucumber lines in development of gynoecious hybrids. Hortic Sci 5(4)Google Scholar
  41. Renner SS, Chomicki G, Greuter W (2014) (2313) Proposal to conserve the name Momordica lanata (Citrullus lanatus) (watermelon, Cucurbitaceae), with a conserved type, against Citrullus battich. Taxon 63(4):941–942Google Scholar
  42. RHS (1995) The Royal Horticultural Society’s colour chart, 3rd edn. Royal Horticultural Society, LondonGoogle Scholar
  43. Ritschel PS, Lins TC, Tristan RL, Buso GS, Buso JA, Ferreira ME (2004) Development of microsatellite markers from an enriched genomic library for genetic analysis of melon (Cucumis melo L.). BMC Plant Biol 4(1):9PubMedCentralCrossRefPubMedGoogle Scholar
  44. Sari N, Solmaz I, Yetisir H, Unlu H (2005) Watermelon genetic resources in Turkey and their characteristics. In: III International symposium on cucurbits 731, pp 433–438Google Scholar
  45. Solmaz I, Sarı N (2009) Characterization of watermelon (Citrullus lanatus) accessions collected from Turkey for morphological traits. Genet Resour Crop Evol 56(2):173–188CrossRefGoogle Scholar
  46. Solmaz I, Sari N, Aka-Kacar Y, Yalcin-Mendi NY (2010) The genetic characterization of Turkish watermelon (Citrullus lanatus) accessions using RAPD markers. Genet Resour Crop Evol 57(5):763–771CrossRefGoogle Scholar
  47. Sugiyama M, Sugiyama K, Ohara T, Morishita M, Sakata Y, Lebeda A, Paris H (2004) Characteristics and inheritance of a high hermaphroditic flower-bearing accession of watermelon (Citrullus lanatus). In: Progress in cucurbit genetics and breeding research. Proceedings of Cucurbitaceae 2004, the 8th EUCARPIA meeting on cucurbit genetics and breeding, Olomouc, Czech Republic, 12–17 July 2004. Palacký University in Olomouc, pp 175–179Google Scholar
  48. Szamosi C, Solmaz I, Sari N, Bársony C (2009) Morphological characterization of Hungarian and Turkish watermelon (Citrullus lanatus (Thunb.) Matsum. et Nakai) genetic resources. Genet Resour Crop Evol 56(8):1091–1105CrossRefGoogle Scholar
  49. van der Vossen HAM, Denton OA, El Tahir IM (2004) Citrullus lanatus (Thunb.) Matsum. et Nakai. In: Grubben GJH, Denton OA (eds) Plant resources of tropical Africa 2.Vegetables. PROTA Foundation/Backhuys Publishers, Wageningen, pp 185–191Google Scholar
  50. Whitaker TW, Bemis WB (1976) Cucurbits. In: Simmonds NW (ed) Evolution of crop plants. Longman, London, pp 64–69Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • Enoch G. Achigan-Dako
    • 1
    • 4
    Email author
  • Edgar S. Avohou
    • 1
  • Come Linsoussi
    • 1
  • Adam Ahanchede
    • 1
  • Raymond S. Vodouhe
    • 2
  • Frank R. Blattner
    • 3
  1. 1.Horticulture and Genetics Unit, Faculty of Agronomic SciencesUniversity of Abomey-CalaviCotonouRepublic of Benin
  2. 2.Bioversity International, West and Central Africa OfficeCotonouRepublic of Benin
  3. 3.Leibniz Institute of Plant Genetics and Crop Plant Research (IPK)GaterslebenGermany
  4. 4.Abomey-CalaviRepublic of Benin

Personalised recommendations