Genetic Resources and Crop Evolution

, Volume 62, Issue 6, pp 893–912 | Cite as

Spatial distribution of genetic variation of Stenocereus pruinosus (Otto) Buxb. in Mexico: analysing evidence on the origins of its domestication

  • Fabiola Parra
  • Alejandro CasasEmail author
  • Víctor Rocha
  • Antonio González-Rodríguez
  • Salvador Arias-Montes
  • Hernando Rodríguez-Correa
  • Janet Tovar
Research Article


We studied populations of Stenocereus pruinosus throughout Mexico, a species important for its edible fruit. The Tehuacán Valley is setting of ancient and the currently most active management of S. pruinosus; we hypothesized Tehuacán as the original area of domestication of S. pruinosus and expected to find there its highest genetic variation and original source of genes of cultivated plants. Through nuclear microsatellite loci we studied spatial distribution of genetic variation and population differentiation. We sampled wild and managed populations of the Central-western (Tehuacán, Central Valleys and Tehuantepec, Oaxaca), north-eastern (Huasteca) and south-eastern (Chiapas) regions. Differences among regions and populations were compared through homogeneity and exact test for F IS , AMOVA, Bayesian analysis, and genetic barriers. A niche analysis allowed corroborating taxonomic identity of populations. The highest genetic diversity was in Tehuantepec (H E  = 0.841), decreasing towards the extremes of distribution (H E  = 0.242 in Huasteca, H E  = 0.254 in Chiapas). Genetic structure is significantly high among populations and regional groups, differentiating one group formed by northern and southern populations and other formed by populations of the Central-western region. Differences among groups suggested that populations from Huasteca could be species different to S. pruinosus, but the niche analysis did not support such hypothesis. Populations from Tehuantepec were different but genetically interconnected with those of Tehuacán. Tehuantepec is the main reservoir of genetic diversity of wild populations of S. pruinosus, but Tehuacán is the principal current area of domestication of S. pruinosus and probably where its domestication originated. Conclusions would be stronger by analyzing DNAc lineages.


Centre of origin Columnar cacti Domestication Genetic resources conservation Mesoamerica Stenocereus pruinosus 



The authors thank the Posgrado en Ciencias Biológicas, UNAM and CONACYT, Mexico for ease PhD studies of FP and HRC. We also thank DGAPA UNAM (Project IN209214) CONACYT (research project CB-2013-01-221800) and partial fellowship for Postgraduate Thesis of Red Latinoamericana de Botánica for financial support, as well as Edgar Pérez-Negrón for field work assistance.


  1. Arnaud-Haond S, Teixeira SI, Mssa C, Billot P, Saenger G, Coupland CM, Duarte A, Aerraos A (2006) Genetic structure at range edge: low diversity and high inbreeding in Southeast Asian mangrove (Avicennia marina) populations. Mol Ecol 15:3515–3525PubMedCrossRefGoogle Scholar
  2. Barrier E, Velasquillo L, Chávez M, Gaulon R (1998) Neotectonic evolution of the Isthmus of Tehuantepec (southeastern Mexico). Tectonophysics 287:77–96CrossRefGoogle Scholar
  3. Beerli P, Felsenstein J (1999) Maximum-likelihood estimation of migration rates and effective population numbers in two populations using a coalescent approach. Genet 152:763–773Google Scholar
  4. Beerli P, Felsenstein J (2001) Maximum likelihood estimation of a migration matrix and effective population sizes in n subpopulations by using a coalescent approach. Proc Natl Acad Sci USA 98:4563–4568Google Scholar
  5. Blancas J, Casas A, Rangel-Landa S, Moreno-Calles A, Torres I, Pérez-Negrón E, Solís L, Delgado-Lemus A, Parra F, Arellanes Y, Caballero J, Cortés L, Lira R (2010) Plant management in the Tehuacán-Cuicatlán Valley, Mexico. Econ Bot 64:287–302CrossRefGoogle Scholar
  6. Blancas J, Casas A, Pérez-Salicrup D, Caballero J, Vega E (2013) Ecological and socio-cultural factors influencing plant management in Náhuatl communities of the Tehuacán Valley, Mexico. J Ethnobiol Ethnomed 9:39PubMedCentralPubMedCrossRefGoogle Scholar
  7. Boege E (2008) El patrimonio biocultural de los pueblos indígenas de México: Hacia la conservación in situ dela biodiversidad y agrobiodiversidad de los territorios indígenas. Instituto Nacional de Antropología e Historia, MéxicoGoogle Scholar
  8. Bravo-Hollis E (1978) Las Cactáceas de México. Vol. I. Universidad Nacional Autónoma de México, MéxicoGoogle Scholar
  9. Brunet J (1967) Geologic studies. In: Byers DS (ed) The prehistory of the Tehuacan Valley. Environment and subsistence. Texas University of Press, Austin, pp 66–90Google Scholar
  10. Buckler E, Pearsall D, Holtsford T (1998) Climate, plant ecology, and central Mexican archaic subsistence. Curr Anthrop 39:152–164CrossRefGoogle Scholar
  11. Caballero J, Casas A, Cortés L, Mapes C (1998) Patrones en el conocimiento, uso y manejo de plantas en pueblos indígenas de México. Revista Estudios Atacameños 16:181–196Google Scholar
  12. Casas A, Pickersgill B, Caballero J, Valiente-Banuet A (1997) Ethnobotany and domestication in xoconochtli, Stenocereus stellatus (Cactaceae), in the Tehuacán Valley and la Mixteca Baja, México. Econ Bot 51:279–292CrossRefGoogle Scholar
  13. Casas A, Caballero J, Valiente-Banuet A (1999) Use, management and domestication of columnar cacti in the South-Central México: a historical perspective. J Ethnobiol 19:71–95Google Scholar
  14. Casas A, Cruse J, Morales E, Otero-Arnaiz A, Valiente-Banuet A (2006) Maintenance of phenotypic and genotypic diversity of Stenocereus stellatus (Cactaceae) by indigenous peoples in Central Mexico. Biodivers Conserv 15:879–898CrossRefGoogle Scholar
  15. Casas A, Otero-Arnaiz A, Pérez-Negrón E, Valiente-Banuet A (2007) In situ management and domestication of plants in Mesoamerica. Ann Bot 100:1101–1115PubMedCentralPubMedCrossRefGoogle Scholar
  16. Casas A, Rangel-Landa S, Torres-García I, Pérez-Negrón E, Solís L, Parra F, Delgado A, Blancas JJ, Farfán B, Moreno AI (2008) In situ management and conservation of plant resources in the Tehuacán-Cuicatlán Valley, Mexico: an ethnobotanical and ecological approach. In: Albuquerque UP, Alves-Ramos M (eds) Current topics in ethnobotany. Research Signpost, Kerala, pp 1–25Google Scholar
  17. Colunga-GarcíaMarín P, Zizumbo-Villareal D (2004) Domestication of plants in Mayan lowlands. Econ Bot 58:101–110CrossRefGoogle Scholar
  18. Colunga-GarcíaMarín P, Estrada-Loera E, May-Pat F (1996) Patterns of morphological variation, diversity, and domestication of wild and cultivated populations of Agave in Yucatán, Mexico. Am J Bot 83:1069–1082CrossRefGoogle Scholar
  19. Cruse-Sanders JM, Parker KC, Friar EA, Huang DI, Mashayekhi S, Prince LM, Otero-Arnaiz A, Casas A (2013) Managing diversity: Domestication and gene flow in Stenocereus stellatus Riccob. (Cactaceae) in Mexico. Ecol Evol 3:1340–1355PubMedCentralPubMedCrossRefGoogle Scholar
  20. Darwin C (1859) The origins of species by means in natural selection or the preservation of favoured races in the struggle for life. Wiley, LondonCrossRefGoogle Scholar
  21. Dávila P, Arizmendi MC, Valiente-Banuet A, Villaseñor JL, Casas A, Lira R (2002) Biological diversity in the Tehuacán-Cuicatlán Valley, Mexico. Biodivers Conserv 11:421–442CrossRefGoogle Scholar
  22. Dieringer D, Schotterer C (2003) Microsatellite analyzer (MSA): a platform independent analysis tool for large microsatellite data sets. Mol Ecol Notes 3:167–169CrossRefGoogle Scholar
  23. Doebley J, Gaut B, Smith B (2006) The molecular genetics of crop domestication. Cell 127:1309–1321PubMedCrossRefGoogle Scholar
  24. Dyer RJ, Nason JD (2004) Population graphs: the graph theoretic shape of genetic structure. Mol Ecol 13:1713–1727PubMedCrossRefGoogle Scholar
  25. Eckert CG (2002) The loss of sex in clonal plants. Evol Ecol 15:501–520CrossRefGoogle Scholar
  26. Eckert CG, Samis KE, Lougheed SC (2008) Genetic variation across species’ geographical ranges: the central–marginal hypothesis and beyond. Mol Ecol 17:1170–1188PubMedCrossRefGoogle Scholar
  27. Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 14:2611–2620PubMedCrossRefGoogle Scholar
  28. Excoffier L, Laval G, Schneider S (2005) Arlequin (version 3.0): An integrated software package for population genetics data analysis. Evol Bioinform 1:47–50Google Scholar
  29. Falush D, Stephens M, Pritchard JK (2003) Inference of population structure using multilocus genotype data: linked loci and correlated allele frequencies. Genet 164:1567–1587Google Scholar
  30. Flannery KV (1986) Guilá Naquitz. Academic Press, New YorkGoogle Scholar
  31. Gapare WJ, Aitken SN (2005) Strong spatial genetic structure in peripheral but not core populations of Sitka spruce [Picea sitchensis (Bong.) Carr.]. Mol Ecol 14:2659–2667PubMedCrossRefGoogle Scholar
  32. García E (1981) Modificaciones al sistema de clasificación climática de Köeppen para adaptarlo a las condiciones de la República Mexicana. Instituto de Geografía, Universidad Nacional Autónoma de México, MéxicoGoogle Scholar
  33. Gepts P, Bettinger R, Brush S, Damania A, Famula T, McGuire P, Qualset C (2012) Introduction: the domestication of plants and animals: ten unanswered questions. In: Gepts P, Bettinger R, Brush S, Damania A, Famula T, McGuire P, Qualset C (eds) Biodiversity in agriculture: domestication, evolution, and sustainability. Cambridge University Press, Cambridge, pp 1–8CrossRefGoogle Scholar
  34. Gibson AC, Horak KE (1978) Systematic anatomy and phylogeny of Mexican columnar cacti. Ann Mo Bot Gard 65:999–1057CrossRefGoogle Scholar
  35. Gibson AC, Nobel P (1990) The cactus primer. Harvard University Press, HarvardGoogle Scholar
  36. Goldstein DB, Ruiz-Linares A, Cavalli-Sforza LL, Feldman MW (1995) An evaluation of genetic distances for use with microsatellite loci. Genetics 139:463–471PubMedCentralPubMedGoogle Scholar
  37. Goudet J (1995) Fstat version 1.2: a computer program to calculate F statistics. J Hered 86:485–486Google Scholar
  38. Gross B, Olsen K (2010) Genetic perspectives on crop domestication. Trend Plan Sci 15:529–537CrossRefGoogle Scholar
  39. Guillén S, Terrazas T, De la Barrera E, Casas A (2011) Germination differentiation patterns of wild and domesticated columnar cacti in a gradient of artificial selection intensity. Genet Resour Crop Evol 58:409–423Google Scholar
  40. Gutiérrez-Rodríguez C, Ornelas JF, Rodríguez-Gómez F (2011) Chloroplast DNA phylogeography of a distylous shrub (Palicourea padifolia, Rubiaceae) reveals past fragmentation and demographic expansion in Mexican cloud forests. Mol Phylogen Evol 61:603–615CrossRefGoogle Scholar
  41. Harlan J (1975) Crops and man. American Society of Agronomy, MadisonGoogle Scholar
  42. Horner MA, Fleming TH, Sahey CT (1998) Foraging behaviour and energetics of a nectar-feeding bat, Leptonycteris curasoae (Chiroptera: Phyllostomidae). J Zool 244:575–586CrossRefGoogle Scholar
  43. Lonn M, Prentice HC (2002) Gene diversity and demographic turnover in central and peripheral populations of the perennial herb Gypsophila fastigiata. Oikos 99:489–498CrossRefGoogle Scholar
  44. Luna-Morales C, Aguirre R, Peña C (2001) Cultivares tradicionales mixtecos de Stenocereus pruinosus y S. stellatus (Cactaceae). An Instit Biol 72:131–155Google Scholar
  45. MacNeish RS (1967) A summary of the subsistence. In: Byers DS (ed) The prehistory of the Tehuacán Valley. Environment and subsistence. University of Texas Press, Austin, pp 290–331Google Scholar
  46. Manni F, Guérard E, Heyer E (2004) Geographic patterns of (genetic, morphologic, and linguistic) variation: how barriers can be detected by using Monmonier´s algorithm. Hum Biol 72:173–190CrossRefGoogle Scholar
  47. McAuliffe JR, Sundt PC, Valiente-Banuet A, Casas A, Viveros JL (2001) Pre-Columbian soil erosion, persistent ecological changes, and collapse of a subsistence agricultural economy in the semi-arid Tehuacán Valley, Mexico’s ‘Cradle of Maize’. J Arid Environ 47:47–75CrossRefGoogle Scholar
  48. McCormack JE, Zellmer AJ, Knowles LL (2009) Does niche divergence accompany allopatric divergence in Aphelocoma jays as predicted under ecological speciation? Insights from tests with niche models. Evolution 64:1231–1244Google Scholar
  49. Miller MP (1997) Tools for population genetics analyses (TFPGA) 1.3. A windows program for the analysis of allozymes and molecular population genetic data. Computer software distributed by authorGoogle Scholar
  50. Miller A, Schaal B (2006) Domestication and the distribution of genetic variation in wild and cultivated populations of the Mesoamerican fruit tree Spondias purpurea L. (Anacardiaceae). Mol Ecol 15:1467–1480PubMedCrossRefGoogle Scholar
  51. Morrone JJ (2006) Biogeographic areas and transition zones of Latin America and the Caribbean islands based on a biogeographic and cladistics analyses of the entomofauna. Ann Rev Entom 51:467–494PubMedCrossRefGoogle Scholar
  52. Nei M (1972) Genetic distance between populations. Am Nat 106:283–292CrossRefGoogle Scholar
  53. Otero-Arnaiz A, Cruse-Sanders J, Casas A, Hamrick JL (2004) Isolation and characterization of microsatellites in the columnar cactus: Polaskia chichipe and cross-species amplification within the Tribe Pachycereeae (Cactaceae). Mol Ecol Notes 4:265–269CrossRefGoogle Scholar
  54. Otero-Arnaiz A, Casas A, Hamrick JL, Cruse-Sanders J (2005) Genetic variation and evolution of Polaskia chichipe (Cactaceae) under domestication in the Tehuacán Valley, Central Mexico. Mol Ecol 14:1603–1611PubMedCrossRefGoogle Scholar
  55. Parra F, Casas A, Peñaloza-Ramírez JM, Cortés-Palomec A, Rocha-Ramírez V, González-Rodríguez A (2010) Process of domestication of Stenocereus pruinosus (Cactaceae) in the Tehuacán Valley, Central Mexico. Ann Bot 106:483–496PubMedCentralPubMedCrossRefGoogle Scholar
  56. Parra F, Blancas J, Casas A (2012) Landscape management and domestication of Stenocereus pruinosus (Cactaceae) in the Tehuacán Valley: human guided selection and gene flow. J Ethnobiol Ethnomed 8:32PubMedCentralPubMedCrossRefGoogle Scholar
  57. Peakall R, Smouse PE (2006) GENALEX 6, genetic analysis in Excel: population genetic software for teaching and research. Mol Ecol Notes 6:288–295CrossRefGoogle Scholar
  58. Peck JR, Yearsley JM, Waxman D (1998) Explaining the geographic distributions of sexual and asexual populations. Nature 391:889–892CrossRefGoogle Scholar
  59. Pickersgill B (2007) Domestication of plants in the Americas: insights from Mendelian and molecular genetics. Ann Bot 100:925–940PubMedCentralPubMedCrossRefGoogle Scholar
  60. Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959PubMedCentralPubMedGoogle Scholar
  61. R Core Team (2013) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0.
  62. Raymond M, Rousset F (1995) GENEPOP (version 1.2): population genetics software for exact tests and ecumenicism. J Hered 86:248–249Google Scholar
  63. Red Mundial de Información sobre Biodiversidad (REMIB) (2011) México: Comisión Nacional de para el Conocimiento y Uso de la Biodiversidad (CONABIO).
  64. Rice WR (1989) Analyzing tables of statistical tests. Evolution 43:223–225CrossRefGoogle Scholar
  65. Santa Anna H, Contreras-Medina R, Luna-Vega I (2009) Biogeographic analysis of endemic cacti of the Sierra Madre Oriental, Mexico. Biol J Linn Soc 97:373–389CrossRefGoogle Scholar
  66. Servicio Meteorológico Nacional (2012) México.
  67. Silvertown J (2008) The evolutionary maintenance of sexual reproduction: evidence from the ecological distribution of asexual reproduction in clonal plants. Int J Plant Sci 169:157–168CrossRefGoogle Scholar
  68. Slatkin M (1995) A measure of population subdivision based on microsatellite allele frequencies. Genetics 139:457–462PubMedCentralPubMedGoogle Scholar
  69. Smith EC (1967) Plant remains. In: Byers DS (ed) The prehistory of the Tehuacán Valley. Environment and subsistence. University of Texas Press, Austin, pp 220–255Google Scholar
  70. Stenberg P, Lundmark M, Saura A (2003) MLGsim: a program for detecting clones using a simulation approach. Mol Ecol Notes 3:329–331CrossRefGoogle Scholar
  71. Twyford A, Kidner C, Harrison N, Ennos RA (2013) Population history and seed dispersal in widespread Central American Begonia species (Begoniaceae) inferred from plastome-derived microsatellite markers. Bot J Linn Soc 171:260–276Google Scholar
  72. Valiente-Banuet A, Arizmendi MC, Rojas-Martinez A, Domínguez-Canseco L (1996) Ecological relationships between columnar cacti and nectar-feeding bats in México. J Trop Ecol 12:103–119CrossRefGoogle Scholar
  73. Van Oosterhout C, Hutchinson WF, Wills DP, Shipley P (2004) MICRO-CHECKER: software for identifying and correcting genotyping errors in microsatellite data. Program Note. Mol Ecol Notes 4:535–538CrossRefGoogle Scholar
  74. Vavilov NI (1951) The Origen, variation, immunity and breeding of cultivated plants. Chron Bot 13:1–366Google Scholar
  75. Wallace R (2002) The phylogeny and systematic of columnar cacti: an overview. In: Fleming T, Valiente- Banuet A (eds) Columnar cacti and their mutualists. evolution, ecology and conservation. The University of Arizona Press, TucsonGoogle Scholar
  76. Zeder M (2006) Central questions in the domestication of plants and animals. Evol Anthrop 15:105–117CrossRefGoogle Scholar
  77. Zohary D (1996) The mode of domestication of the founder crops of Southwest Asian agriculture. In: Harris DR (ed) The origins and spread of agriculture and pastoralism in Eurasia. University College London Press, London, pp 142–158Google Scholar
  78. Zohary D (1999) Monophyletic vs. polyphyletic origin of the crops on which agriculture was founded in the Near East. Genet Resour Crop Evol 46:133–142Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Fabiola Parra
    • 1
  • Alejandro Casas
    • 1
    Email author
  • Víctor Rocha
    • 1
  • Antonio González-Rodríguez
    • 1
  • Salvador Arias-Montes
    • 2
  • Hernando Rodríguez-Correa
    • 1
  • Janet Tovar
    • 1
  1. 1.Centro de Investigaciones en EcosistemasUniversidad Nacional Autónoma de México (UNAM)MoreliaMexico
  2. 2.Jardín Botánico, Instituto de BiologíaUNAMMexicoMexico

Personalised recommendations