Genetic Resources and Crop Evolution

, Volume 62, Issue 4, pp 501–513 | Cite as

Characterization of the genetic diversity of Uganda’s sweet potato (Ipomoea batatas) germplasm using microsatellites markers

  • Barbara M. Zawedde
  • Marc Ghislain
  • Eric Magembe
  • Geovani B. Amaro
  • Rebecca Grumet
  • Jim HancockEmail author
Research Article


Knowledge about the genetic diversity and structure of crop cultivars can help make better conservation decisions, and guide crop improvement efforts. Diversity analysis using microsatellite markers was performed to assess the level of genetic diversity in sweet potato in Uganda, and evaluate the genetic relationship between the Uganda’s germplasm and some genotypes obtained from Kenya, Tanzania, Ghana, Brazil and Peru. A total of 260 sweet potato cultivars were characterized using 93 microsatellite loci. The Ugandan collection showed a large number of distinct landraces, and very low (3 %) levels of genetic diversity between genotypes obtained from the different agro-ecological zones. There was low (6 %) levels of genetic diversity observed between the East African genotypes; however unique alleles were present in collections from the various sources. Pairwise comparisons of genetic differentiation indicated that Uganda’s germplasm was significantly different (P < 0.001) from cultivars from Tanzania, Ghana, Brazil and Peru. The presence of unique alleles in populations from various Uganda’s agro-ecological zones and other global regions, as well as the regional diversity patterns, suggest that efforts should be made to further collect and characterize the germplasm in more depth.


Characterization Crop breeding Ipomoea batatas Molecular markers SSR 



We are very grateful to the Norman E. Borlaug Leadership Enhancement in Agriculture Program (LEAP) for funding this research. Our sincere gratitude goes to Dr. Joseph Nduguru and Luambano Nessie at Mikocheni Agricultural Research Institute, Tanzania for providing us with the samples from Tanzania. We are also grateful to Francis Osingada and Jimmy Akono at the Biosciences Facility of the National Crop Resources Research Institute, Uganda, Bramwel Wanjala of Biosciences eastern and central Africa (BecA) Hub and Maggie Mwathi of CIP-Office at the International Livestock Research Institute in Nairobi, Kenya, for the technical assistance provided to conduct the research.


  1. Andersson MS, de Vicente MC (2010) Gene flow between crops and their wild relatives. Johns Hopkins University Press, Baltimore, p 564Google Scholar
  2. Austin DF (1977) Hybrid polyploids in Ipomoea section of Batatas. J Hered 68:259–260CrossRefGoogle Scholar
  3. Austin DF (1983) Variability in sweet potato in America. Proc. Amer. Soc. Hort. Sci. 27(pt. B):15–26Google Scholar
  4. Buteler MI, Jarret RL, La Bonte DR (1999) Sequence characterization of microsatellites in diploid and polyploid Ipomoea. Theor Appl Genet 99:123–132. doi: 10.1007/s001220051216 CrossRefGoogle Scholar
  5. Connolly AG, Godwin ID, Cooper M, Delacy IH (1994) Interpretation of randomamplified polymorphic DNA marker data for fingerprinting sweet potato [Ipomoea batatas (L.) Lam.] genotypes. Theor Appl Genet 88:332–336. doi: 10.1007/BF00223641 PubMedGoogle Scholar
  6. Doyle JJ, Doyle JL (1990) Isolation of plant DNA from fresh tissue. Focus 12:13–15.
  7. Earl DA, von Holdt MB (2012) STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv Genet Resour 4(2):359–361. doi: 10.1007/s12686-011-9548-7 CrossRefGoogle Scholar
  8. Elameen A, Fjellheim S, Larsen A, Rognli AO, Sundheim L, Msolla S, Masumba E, Mtunda K, Klemsdal SS (2008) Analysis of genetic diversity in a sweet potato (Ipomoea batatas L.) germplasm collection from Tanzania as revealed by AFLP. Genet Resour Crop Evol 55:397–408. doi: 10.1007/s10722-007-9247-0 CrossRefGoogle Scholar
  9. Esselink GD, Nybom H, Vosman B (2004) Assignment of allelic configuration in polyploids using the MAC-PR (microsatellite DNA allele counting-peak ratios) method. Theor Appl Genet 109:402–408. doi: 10.1007/s00122-004-1645-5 CrossRefPubMedGoogle Scholar
  10. Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 14:2611–2620. doi: 10.1111/j.1365-294X.2005.02553.x CrossRefPubMedGoogle Scholar
  11. FAO (2008) The state of food insecurity in the world 2003. Food and Agriculture Organization, Rome. Accessed 16 May 2012
  12. FAO (2012) FAO crop production statistics. Food and Agriculture Organization. Accessed 03 March 2013
  13. Gao M, Ashu GM, Lakeisha S, Akwe WA, Njiti V, Barnes S (2011) Wx intron variations support an allohexaploid origin of the sweet potato [Ipomoea batatas (L.) Lam.]. Euphytica 177:111–133. doi: 10.1007/s10681-010-0275-z CrossRefGoogle Scholar
  14. García-Verdugo C, Fay MF, Granado-Yela C, Rubio De Casas R, Balaguer L, Besnard G, Vargas P (2009) Genetic diversity and differentiation processes in the ploidy series of Olea europaea L.: a multiscale approach from subspecies to insular populations. Mol Ecol 18:454–467. doi: 10.1111/j.1365-294X.2008.04027.x CrossRefPubMedGoogle Scholar
  15. Gichuki ST, Berenyi M, Zhang D, Herman M, Schmidt J, Glossl J, Burgh K (2003) Genetic diversity in sweet potato [Ipomoea batatas (L.) Lam.] in relationship to geographic sources as assessed with RAPD markers. Genet Resour Crop Evol 50:429–437. doi: 10.1023/A:1023998522845 CrossRefGoogle Scholar
  16. Gichuru V, Aritua V, Lubega GW, Edema R, Adipala E, Rubaihayo PR (2006) A preliminary analysis of diversity among East African sweet potato landraces using morphological and simple sequence repeats (SSR) markers. Acta Hort (ISHS) 703:159–164.
  17. He G, Prakash CS, Jarret RL (1995) Analysis of genetic diversity in a sweet potato (Ipomoea batatas) germplasm collection using DNA amplification fingerprinting. Genome 38(5):938–945. doi: 10.1139/g95-123 CrossRefPubMedGoogle Scholar
  18. He X, Liu Q, Ishiki K, Zhai H, Wang Y (2006) Genetic diversity and genetic relationships among Chinese sweet potato landraces revealed by RAPD and AFLP markers. Breed Sci 56:201–207. doi: 10.1270/jsbbs.56.201 CrossRefGoogle Scholar
  19. Holsinger KE, Bruce SW (2009) Genetics in geographically structured populations: defining, estimating and interpreting FST. Nat Rev Genet 10(9):639–650. doi: 10.1038/nrg2611 CrossRefPubMedPubMedCentralGoogle Scholar
  20. Hu J, Nakatani M, Lalusin AG, Kuranouch T, Fujimura T (2003) Genetic analysis of sweet potato and its wild relatives using inter-simple sequence repeat (ISSRs). Breed Sci 53:297–304. doi: 10.1270/jsbbs.53.297 CrossRefGoogle Scholar
  21. Hu J, Nakatani M, Mizuno K, Fujimura T (2004) Development and characterization of microsatellite markers in sweet potato. Breed Sci 54:177–188. doi: 10.1270/jsbbs.54.177 CrossRefGoogle Scholar
  22. Hwang SY, Tseng YT, Lo HF (2002) Application of simple sequence repeats in determining the genetic relationships of cultivars used in sweet potato polycross breeding in Taiwan. Sci Hort 93:215–224. doi: 10.1016/S0304-4238(01)00343-0 CrossRefGoogle Scholar
  23. Jaccard P (1908) Nouvelles recherches sur la distribution florale. Bull Soc Vaud Sci Nat 44:223–270 (In French)Google Scholar
  24. Jakobsson M, Rosenberg NA (2007) CLUMPP: a cluster matching and permutation program for dealing with label switching and multimodality in analysis of population structure. Bioinformatics 23(14):1801–1806. doi: 10.1093/bioinformatics/btm233 CrossRefPubMedGoogle Scholar
  25. Jarret RL, Bowen N (1994) Simple sequence repeats (SSRs) for sweet potato characterization. Plant Genet Resour Newsl 100:9–11Google Scholar
  26. Jørgensen MH, Carlsen T, Skrede I, Elven R (2008) Microsatellites resolve the taxonomy of the polyploidy Cardamine digitata aggregate (Brassicaceae). Taxon 57:882–892.
  27. Karuri HW, Ateka EM, Amata R, Nyende AB, Muigai AWT, Mwasame E, Gichuki ST (2010) Evaluating diversity among Kenyan sweet potato genotypes using morphological and SSR markers. Int J Agric Biol. 12:33–38.
  28. Kloda JM, Dean PDG, Maddren C, MacDonald DW, Mayes S (2008) Using principal component analysis to compare genetic diversity across polyploidy levels within plant complexes: an example from British Restharrows (Ononis spinosa and Ononis repens). J Hered 100:253–260. doi: 10.1038/sj.hdy.6801044 CrossRefGoogle Scholar
  29. Kobayashi M (1983) The Ipomoea trifida complex closely related to sweet potato. In: Shideler SF, Rincon H (eds.) Proceedings of the 6th symposium of the International Society of Tropical Root Crops, Lima, Peru, 21–26 February, 1983, International Potato Center, Lima, Peru, pp 561–568Google Scholar
  30. Lebot V (2010) Sweet potato, chapter 3. In: Bradshaw JE (ed) Root and tuber crops. Handbook of Plant Breeding 7. Springer Science & Business Media, Berlin, pp 97–125Google Scholar
  31. Mignouna HD, Abang MM, Fagbemi SA (2003) A comparative assessment of molecular marker assays (AFLP, RAPD and SSR) for white yam (Dioscorea rotundata Poir.) germplasm characterization. Ann Appl Biol 142:269–276. doi: 10.1111/j.1744-7348.2003.tb00250.x CrossRefGoogle Scholar
  32. Muyinza H, Talwana HL, Mwanga ROM, Stevenson PC (2012) Sweet potato weevil (Cylas spp.) resistance in African sweet potato germplasm. Int J Pest Manag 58(1):78–81. doi: 10.1080/09670874.2012.655701 CrossRefGoogle Scholar
  33. Mwanga ROM, Odongo B, Ocitti p’obwoya C, Gibson RW, Smith N, Carey E (2003) Release of six (“NASPOT 1” to “NASPOT 6”) sweet potato cultivars in Uganda. HortScience 38:475–476.
  34. Mwanga ROM, Odongo B, Niringiye CN, Alajo A, Kigozi B, Makumbi R et al (2009) “NASPOT 7”, “NASPOT 8”, “NASPOT 9 O”, “NASPOT 10 O”, and “Dimbuka-Bukulula” sweet potato. HortScience 44:828–832.
  35. Mwanga ROM, Niringiye CN, Alajo A, Kigozi B, Namakula J, Mpembe I et al (2011) “NAPOT 11”, a sweet potato cultivar bred by a participatory plant-breeding approach in Uganda. HortScience 46:317–321.
  36. Nei M (1973) Analysis of gene diversity in subdivided populations. Proc Natl Acad Sci USA 70:3321–3323CrossRefPubMedPubMedCentralGoogle Scholar
  37. Nishiyama I (1971) The origin of the sweet potato plant. In: Barrau J (ed) Plants and the migrations of Pacific peoples. Press Honolulu, Bishop Mus, pp 119–128Google Scholar
  38. Otoo E, Akromah R, Kolesnikova-Allen M, Asiedu R (2009) Delineation of pona complex of yam in Ghana using SSR markers. Int J Genet Mol Biol 1:6–16 (Article number 77EE4812732)Google Scholar
  39. Peakall R, Smouse PE (2006) GENALEX 6: genetic analysis in Excel. Population genetic software for teaching and research. Mol Ecol Notes 6:288–295. doi: 10.1111/j.1471-8286.2005.01155.x CrossRefGoogle Scholar
  40. Perrier X, Jacquemoud-Collet JP (2006) DARwin software. Accessed 26 Aug 2012
  41. Prasanth VP, Chandra S (1997) ALS-Binary: A C Program for converting allele size in microsatellite markers to 0–1 (Binary Data). Biometrics. ICRISAT. International Crops Research Institute for the Semi-Arid Tropics, India. Accessed 05 July 2012
  42. Prasanth VP, Chandra S, Jayashree B, Hoisington D (1997) AlleloBi—a program for allele binning of microsatellite markers based on the alogirithm of Idury and Cardon (1997). ICRISAT. International Crops Research Institute for the Semi-Arid Tropics, India. Accessed 05 July 2012
  43. Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure from multilocus genotype data. Genetics 155:945–959.
  44. Pritchard JK, Wen X, Falush D (2009) Documentation for structure software. Version 2.3. Accessed 18 Oct 2012
  45. Rosenberg NA (2004) Distruct: a program for the graphical display of population structure. Mol Ecol Notes 4:137–138.
  46. Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425.
  47. Sampson JF, Byrne M (2012) Genetic diversity and multiple origins of polyploid Atriplex nummularia Lindl. (Chenopodiaceae). Biol J Linn Soc 105:218–230. doi: 10.1111/j.1095-8312.2011.01787.x CrossRefGoogle Scholar
  48. Schafleitner R, Tincopa LR, Palomino O, Rossel G, Robles RF, Alagon R, Rivera C, Quispe C, Rojas L, Pacheco JA (2010) A sweet potato gene index established by de novo assembly of pyrosequencing and Sanger sequences and mining for gene-based microsatellite markers. BMC Genome 11:604. doi: 10.1186/1471-2164-11-604 CrossRefGoogle Scholar
  49. Schlotterer C, Tautz D (1992) Slippage synthesis of simple sequence DNA. Nucleic Acid Res 20:211–215 (PMCID: PMC310356)CrossRefPubMedPubMedCentralGoogle Scholar
  50. Shiotani I, Kawase T (1987) Synthetic hexaploids derived from wild species related in Ipomoea trifida. Jpn J Breed 39:57–66CrossRefGoogle Scholar
  51. Shiotani I, Kawase T (1989) Genomic structure of the sweet potato and hexaploids in Ipomoea trifida (H.B.K) Don. Jpn J Breed 39:57–66.
  52. Sneath PHA, Sokal RR (1973) Numerical Taxonomy. Freeman, San Francisco, p 573Google Scholar
  53. Srisuwan S, Sihachakr D, Siljak-Yakovlev S (2006) The origin and evolution of sweet potato (Ipomoea batatas Lam.) and its wild relatives through the cytogenetic approaches. Plant Sci 171:424–433. doi: 10.1016/j.plantsci.2006.05.007 CrossRefPubMedGoogle Scholar
  54. Tseng YT, Lo HF, Hwang SY (2002) Genotyping and assessment of genetic relationships in elite polycross breeding cultivars of sweet potato in Taiwan based on SAMPL polymorphisms. Bot Bull Acad Sin 43:99–105.
  55. Tumwegamire S, Kapinga R, Rubaihayo PR, LaBonte Do R, Grüneberg WJ, Burgos G, zum Felde T, Carpio R, Pawelzik E, Mwanga ROM (2011) Evaluation of dry matter, protein, starch, sucrose, β-carotene, iron, zinc, calcium, and magnesium in east african sweet potato [Ipomoea batatas (L.) Lam.] Germplasm. HortScience 46:348–357.
  56. Veasey EA, Borges A, Rosa MS, Queiroz-Silva JR, Bressan EDA, Peroni N (2008) Genetic diversity in Brazilian sweetpotato (Ipomoea batatas (L.) Lam., Solanales, Convolvulaceae) landraces assessed with microsatellite markers. Genet Mol Biol 31:725–733. doi: 10.1590/S1415-47572008000400020
  57. Weir BS (1996) Genetic data analysis II. Methods for discrete population genetic data. Sinauer Associates, Inc., Sunderland, p 445Google Scholar
  58. Yada B, Tukamuhabwa P, Villordon A, Alajo A, Mwanga ROM (2010a) An online database of sweet potato germplasm collection in Uganda. Hortscience 45(1):153–153.
  59. Yada B, Tukamuhabwa P, Wanjala B, Kim D-J, Skilton RA, Alajo A, Mwanga ROM (2010b) Characterization of Ugandan sweet potato germplasm using fluorescent labeled simple sequence repeat markers. Hortscience 45(2):225–230.
  60. Yañez AVO (2002) Aislamiento y caracterización de marcadores moleculares microsatelites a partir de la construcción de librerias genomicas enriquecidas de camote (Ipomoen batatas (L.) Lam.). Universidad Nacional Mayor de San Marcos. Facultad de Ciencias Biológicas. EAP, Lima 108Google Scholar
  61. Yen DE (1982). Sweet potato in historical perspective. In: Villareal RL, Griggs TD (eds) Proceedings of the first international symposium, AVRDC, Publ. No. 82–172, pp 17–30Google Scholar
  62. Zhang DP, Rossel G, Kriegner A, Hijmans R (2004) AFLP assessment of diversity in sweet potato from Latin America and the Pacific region: its implications on the dispersal of the crop. Genet Resour Crop Evol 51:115–120. doi: 10.1023/B:GRES.0000020853.04508.a0 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Barbara M. Zawedde
    • 1
    • 4
  • Marc Ghislain
    • 2
  • Eric Magembe
    • 2
  • Geovani B. Amaro
    • 3
  • Rebecca Grumet
    • 1
  • Jim Hancock
    • 1
    Email author
  1. 1.Graduate Program in Plant Breeding, Genetics and BiotechnologyMichigan State UniversityEast LansingUSA
  2. 2.CIP Sub-Saharan AfricaInternational Potato CenterNairobiKenya
  3. 3.Embrapa Vegetable CropsBrasíliaBrazil
  4. 4.Uganda Biosciences Information Center (UBIC)National Crop Resources Research InstituteNamulonge, KampalaUganda

Personalised recommendations