Genetic Resources and Crop Evolution

, Volume 61, Issue 8, pp 1565–1580 | Cite as

Genetic structure and eco-geographical adaptation of garlic landraces (Allium sativum L.) in Iran

  • Salar Shaaf
  • Rajiv Sharma
  • Benjamin Kilian
  • Alexander Walther
  • Hakan Özkan
  • Ezzat Karami
  • Bahram Mohammadi
Research Article

Abstract

In this study we present the genetic analysis of freshly collected garlic landraces (Allium sativum L.) along an eco-geographical transect from northeastern to western Iran covering seven different provinces using ISSR and RAPD markers. A total of 52 polymorphic loci were detected among 31 landrace populations. The percentage of polymorphic bands, the mean effective number of alleles, and the mean gene diversity were 38.82 %, 1.54, and 0.32, respectively. Genetic principal co-ordinate analysis and Structure analysis using 52 polymorphic loci indicated that the germplasm could be divided into two major groups. Principal component analysis (PCA), using geographical and environmental variables suggested the role of both geographical and environmental adaptation in driving and maintaining genetic differentiation between the major groups. In addition, our results showed that the combination of latitude, altitude, and precipitation explains the highest proportion of the variance in the PCA of eco-geographical data. This study shows that geographical and environmental factors together created stronger and more discrete genetic differentiation than isolation by distance alone. These findings emphasize the importance of environmental selection in shaping patterns of genetic structure inferred in Iranian garlic germplasm. We suggest that action should be immediately taken for collecting, protecting and evaluating the genetic diversity of garlic landraces before they disappear in Iran.

Keywords

Allium sativum Climate Environmental adaptation Genetic structure Iran Isolation by distance 

Notes

Acknowledgments

The authors would like to acknowledge the research and innovation deputy of the Islamic Azad University, Sanandaj Branch for providing the financial support.

Supplementary material

10722_2014_131_MOESM1_ESM.docx (26 kb)
Supplementary material 1 (DOCX 25 kb)

References

  1. Al-Zahim M, Newbury HJ, Ford-Lloyd BV (1997) Classification of genetic variation in garlic (Allium sativum L.) revealed by RAPD. HortScience 32:1102–1104Google Scholar
  2. Amante C, Eakins BW (2009) ETOPO1 1 Arc-minute global relief model: procedures, data sources and analysis. NOAA Technical Memorandum NESDIS NGDC-24, Boulder (Co)Google Scholar
  3. Baek H, Beharav A, Nevo E (2003) Ecological-genomic diversity of microsatellites in wild barley, Hordeum spontaneum, populations in Jordan. Theor Appl Genet 106:397–410PubMedGoogle Scholar
  4. Baghalian K, Ziai SA, Naghavi MR, Badi HN, Khalighi A (2005) Evaluation of allicin content and botanical traits in Iranian garlic (Allium sativum L.) ecotypes. Sci Hortic 103:155–166CrossRefGoogle Scholar
  5. Baghalian K, Naghavi MR, Ziai SA, Badi HN (2006) Post-planting evaluation of morphological characters and allicin content in Iranian garlic (Allium sativum L.) ecotypes. Sci Hortic 107:405–410CrossRefGoogle Scholar
  6. Balkenhol N, Waits LP, Dezzani RJ (2009) Statistical approaches in landscape genetics: an evaluation of methods for linking landscape and genetic data. Ecography 32:818–830CrossRefGoogle Scholar
  7. Bradley KF, Rieger MA, Collins GG (1996) Classification of Australian garlic cultivars by DNA fingerprinting. Aust J Exp Agric 36:613–618CrossRefGoogle Scholar
  8. Bryant D, Moulton V (2004) Neighbor-Net: an agglomerative method for the construction of phylogenetic networks. Mol Biol Evol 21:255–265PubMedCrossRefGoogle Scholar
  9. Buso GSC, Paiva MR, Torres AC, Resende FV, Ferreira MA, Buso JA, Dusi AN (2008) Genetic diversity studies of Brazilian garlic cultivars and quality control of garlic-clover production. Genet Mol Res 7:534–541PubMedCrossRefGoogle Scholar
  10. Chen S, Zhou J, Chen Q, Chang Y, Du J, Meng H (2013) Analysis of the genetic diversity of garlic (Allium sativum L.) germplasm by SRAP. Biochem Syst Ecol 50:139–146CrossRefGoogle Scholar
  11. Colautti RI, Maron JL, Barrett SCH (2009) Common garden comparisons of native and introduced plant populations: latitudinal clines can obscure evolutionary inferences. Evol Appl 2:187–199PubMedCentralCrossRefGoogle Scholar
  12. Comadran J, Kilian B, Russell J, Ramsay L, Stein N, Ganal M, Shaw P, Bayer M, Thomas W, Marshall D, Hedley P, Tondelli A, Pecchioni N, Francia E, Korzun V, Walther A, Waugh R (2012) Natural variation in a homolog of Antirrhinum CENTRORADIALIS contributed to spring growth habit and environmental adaptation in cultivated barley. Nat Genet 44:1388–1392PubMedCrossRefGoogle Scholar
  13. Cunha CP, Hoogerheide ESS, Zucchi MI, Monteiro M, Pinheiro JB (2012) New microsatellite markers for garlic, Allium sativum (Alliacea). Am J Bot 99:E17–E19PubMedCrossRefGoogle Scholar
  14. De Bustos A, Casanova C, Soler C, Jouve N (1998) RAPD variation in wild populations of four species of the genus Hordeum (Poaceae). Theor Appl Genet 96:101–111CrossRefGoogle Scholar
  15. Earl D, vonHoldt B (2012) STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv Genet Resour 4:359–361CrossRefGoogle Scholar
  16. Engeland RL (1991) Growing great garlic. Filaree Productions, OkanoganGoogle Scholar
  17. Etoh T, Simon PW (2002) Diversity, fertility and seed production of garlic. In: Rabinowitch HD, Currah L (eds) Allium crop sciences: recent advances. CAB International, Wallingford, pp 101–117CrossRefGoogle Scholar
  18. Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software structure: a simulation study. Mol Ecol 14:2611–2620PubMedCrossRefGoogle Scholar
  19. Evans IJ, James AM, Barnes SR (1983) Organization and evolution of repeated DNA sequences in closely related plant genomes. J Mol Biol 170:803–826PubMedCrossRefGoogle Scholar
  20. Falush D, Stephens M, Pritchard JK (2003) Inference of population structure using multilocus genotype data: linked loci and correlated allele frequencies. Genetics 164:1567–1587PubMedCentralPubMedGoogle Scholar
  21. Ferdowsi A (2007) Shahnameh: the Persian book of kings (New trans: Davis D). Penguin Books, New YorkGoogle Scholar
  22. Fitzgerald TL, Shapter FM, McDonald S, Waters DLE, Chivers IH, Drenth A, Nevo E, Henry RJ (2011) Genome diversity in wild grasses under environmental stress. Proc Natl Acad Sci USA 108:21139–21144Google Scholar
  23. Friesen N, Fritsch RM, Blattner FR (2006) Phylogeny and new intrageneric classification of Allium (Alliaceae) based on nuclear rDNA ITS sequences. In: Columbus JT, Friar EA, Hamilton CW, Porter JM, Prince LM, Simpson MG (eds) Monocots: comparative biology and evolution I. Aliso 22:372–395Google Scholar
  24. Fritsch RM, Friesen N (2002) Evolution, domestication, and taxonomy. In: Rabinowitch HD, Currah L (eds) Allium crop science: recent advances. CABI Publishing, Wallingford, pp 5–30Google Scholar
  25. Fu YB (2000) Effectiveness of bulking procedures in measuring population-pairwise similarity with dominant and co-dominant genetic markers. Theor Appl Genet 100:1284–1289CrossRefGoogle Scholar
  26. Gao H, Williamson S, Bustamante CD (2007) A Markov Chain Monte Carlo approach for joint inference of population structure and inbreeding rates from multilocus genotype data. Genetics 176:1635–1651PubMedCentralPubMedCrossRefGoogle Scholar
  27. García-Lampasona S, Asprelli P, Burba JL (2012) Genetic analysis of a garlic (Allium sativum L.) germplasm collection from Argentina. Sci Hortic 138:183–189CrossRefGoogle Scholar
  28. Gilbert JE, Lewis RV, Wilkinson MJ, Caligari PDS (1999) Developing an appropriate strategy to assess genetic variability in plant germplasm collections. Theor Appl Genet 98:1125–1131CrossRefGoogle Scholar
  29. Glaszmann JC, Kilian B, Upadhyaya HD, Varshney RK (2010) Accessing genetic diversity for crop improvement. Curr Opin Plant Biol 13:167–173PubMedCrossRefGoogle Scholar
  30. Gram WK, Sork VL (2001) Association between environmental and genetic heterogeneity in forest tree populations. Ecology 82:2012–2021CrossRefGoogle Scholar
  31. Hammer K, Teklu Y (2008) Plant genetic resources: selected issues from genetic erosion to genetic engineering. J Agric Rural Dev Trop Subtrop 109:15–50Google Scholar
  32. Hanelt P, Schultze-Motel J, Fritsch R, Kruse J, Mass HI, Ohle H, Pistrick K (1992) Infrageneric grouping of Allium—the Gatersleben approach. In: Hanelt P, Hammer K, Knüpffer H (eds) The genus Allium—taxonomic problems and genetic resources. Proceedings of the international symposium. IPK, Gatersleben, pp 305–320Google Scholar
  33. Hijmans RJ, Cameron SE, Parra JL, Jones PG, Jarvis A (2005) Very high resolution interpolated climate surfaces for global land areas. Int J Climatol 25:1965–1978CrossRefGoogle Scholar
  34. Hopkins R, Schmitt J, Stinchcombe JR (2008) A latitudinal cline and response to vernalization in leaf angle and morphology in Arabidopsis thaliana (Brassicaceae). New Phytol 179:155–164PubMedCrossRefGoogle Scholar
  35. Hübner S, Höffken M, Oren E, Haseneyer G, Stein N, Graner A, Schmid K, Fridman E (2009) Strong correlation of wild barley (Hordeum spontaneum) population structure with temperature and precipitation variation. Mol Ecol 18:1523–1536PubMedCrossRefGoogle Scholar
  36. Huson DH, Bryant D (2006) Application of phylogenetic networks in evolutionary studies. Mol Biol Evol 23:254–267PubMedCrossRefGoogle Scholar
  37. Ipek M, Ipek A, Simon PW (2003) Comparison of AFLPs, RAPD markers, and isozymes for diversity assessment of garlic and detection of putative duplicates in germplasm collections. J Am Soc Hortic Sci 128:246–252Google Scholar
  38. Jabbes N, Geoffriau E, Le Clerc V, Dridi B, Hannechi C (2011) Inter simple sequence repeat fingerprints for assess genetic diversity of Tunisian garlic populations. J Agric Sci 3:77–85Google Scholar
  39. Jakob SS, Rödder D, Engler JO, Shaaf S, Özkan H, Blattner FR, Kilian B (2014) Evolutionary history of wild barley (Hordeum vulgare subsp. spontaneum) analyzed using multilocus sequence data and paleodistribution modeling. Genome Biol Evol 6(3):685–702PubMedCentralPubMedCrossRefGoogle Scholar
  40. Jo M, Ham I, Moe K, Kwon S, Lu F, Park Y, Kim W, Won M, Kim T, Lee E (2012) Classification of genetic variation in garlic (Allium sativum L.) using SSR markers. Aust J Crop Sci 6:625–631Google Scholar
  41. Jombart T, Pontier D, Dufour AB (2009) Genetic markers in the playground of multivariate analysis. Heredity 102:330–341PubMedCrossRefGoogle Scholar
  42. Kamenetsky R, London Shafir I, Zemah H, Barzilay A, Rabinowitch HD (2004) Environmental control of garlic growth and florogenesis. J Am Soc Hortic Sci 129:144–151Google Scholar
  43. Kamenetsky R, London Shafir I, Khassanov F, Kik C, van Heusden AW, Vrielink-van Ginkel M, Burger-Meijer K, Auger J, Arnault I, Rabinowitch HD (2005) Diversity in fertility potential and organo-sulphur compounds among garlics from Central Asia. Biodivers Conserv 14:281–295CrossRefGoogle Scholar
  44. Khar A, Devi AA, Lawande KE (2008) Analysis of genetic diversity among Indian garlic (Allium sativum L.) cultivars and breeding lines using RAPD markers. Indian J Genet Plant Breed 68:52–57Google Scholar
  45. Kilian B, Graner A (2012) NGS technologies for analyzing germplasm diversity in genebanks. Brief Funct Genomics 11:38–50PubMedCentralPubMedCrossRefGoogle Scholar
  46. Kis-Papo T, Kirzhner V, Wasser SP, Nevo E (2003) Evolution of genomic diversity and sex at extreme environments: fungal life under hypersaline Dead Sea stress. Proc Natl Acad Sci USA 100:14970–14975PubMedCentralPubMedCrossRefGoogle Scholar
  47. Kottek M, Grieser J, Beck C, Rudolf B, Rubel F (2006) World Map of the Köppen–Geiger climate classification updated. Meteorol Z 15:259–263CrossRefGoogle Scholar
  48. Kraft T, Sall T (1999) An evaluation of the use of pooled samples in studies of genetic variation. Heredity 82:488–494PubMedCrossRefGoogle Scholar
  49. Lassner M, Peterson P, Yoder J (1989) Simultaneous amplification of multiple DNA fragments by polymerase chain reaction in the analysis of transgenic plants and their progeny. Plant Mol Biol Rep 7:116–128CrossRefGoogle Scholar
  50. Legendre P, Fortin M-J (2010) Comparison of the Mantel test and alternative approaches for detecting complex multivariate relationships in the spatial analysis of genetic data. Mol Ecol Resour 10:831–844PubMedCrossRefGoogle Scholar
  51. Leinonen PH, Sandring S, Quilot B, Clauss MJ, Mitchell-Olds T, Ågren J, Savolainen O (2009) Local adaptation in European populations of Arabidopsis lyrata (Brassicaceae). Am J Bot 96:1129–1137PubMedCrossRefGoogle Scholar
  52. Linhart YB, Grant MC (1996) Evolutionary significance of local genetic differentiation in plants. Ann Rev Ecol Syst 27:237–277CrossRefGoogle Scholar
  53. Lynch M, Milligan BG (1994) Analysis of population genetic structure with RAPD markers. Mol Ecol 3:91–99PubMedCrossRefGoogle Scholar
  54. Ma K-H, Kwag J-G, Zhao W, Dixit A, Lee G-A, Kim H–H, Chung I-M, Kim N-S, Lee J-S, Ji J-J, Kim T-S, Park Y-J (2009) Isolation and characteristics of eight novel polymorphic microsatellite loci from the genome of garlic (Allium sativum L.). Sci Hortic 122:355–361CrossRefGoogle Scholar
  55. Maaß HI, Klaas M (1995) Infraspecific differentiation of garlic (Allium sativum) by isozyme and RAPD markers. Theor Appl Genet 91:89–97PubMedCrossRefGoogle Scholar
  56. Mantel N (1967) The detection of disease clustering and a generalized regression approach. Cancer Res 27:209–220PubMedGoogle Scholar
  57. Mascher M, Richmond TA, Gerhardt DJ et al (2013) Barley whole exome capture: a tool for genomic research in the genus Hordeum and beyond. Plant J 76:494–505PubMedCrossRefGoogle Scholar
  58. Mathew B (1996) A review of Allium section Allium. Royal Botanic Gardens Kew, RichmondGoogle Scholar
  59. Matin F (1992) The genus Allium in Iran, diversity, distribution and endemism. In: Hanelt P, Hammer K, Knüpffer H (eds) The genus Allium—taxonomic problems and genetic resources. Proceedings of the international symposium. IPK, Gatersleben, pp 193–194Google Scholar
  60. Mohammadi B, Khodadadi M, Karami E, Shaaf S (2013) Variation in agro-morphological characters in Iranian garlic landraces. Int J Veg Sci. doi: 10.1080/19315260.2013.788594 Google Scholar
  61. Montague JL, Barrett SCH, Eckert CG (2008) Re-establishment of clinal variation in flowering time among introduced populations of purple loosestrife (Lythrum salicaria, Lythraceae). J Evol Biol 21:234–245PubMedGoogle Scholar
  62. Nevo E (2001) Evolution of genome–phenome diversity under environmental stress. Proc Natl Acad Sci USA 10898:6233–6240CrossRefGoogle Scholar
  63. Nevo E, Baum B, Beiles A, Johnson D (1998) Ecological correlates of RAPD DNA diversity of wild barley, Hordeum spontaneum, in the Fertile Crescent. Genet Resour Crop Evol 45:151–159CrossRefGoogle Scholar
  64. Nosil P, Vines TH, Funk DJ, Harrison R (2005) Perspective: reproductive isolation caused by natural selection against immigrants from divergent habitats. Evolution 59:705–719PubMedGoogle Scholar
  65. Nosil P, Egan SP, Funk DJ, Hoekstra H (2008) Heterogeneous genomic differentiation between walking-stick ecotypes: “Isolation by adaptation” and multiple roles for divergent selection. Evolution 62:316–336PubMedCrossRefGoogle Scholar
  66. Panthee DR, Kc RB, Regmi HN, Subedi PP, Bhattarai S, Dhakal J (2006) Diversity analysis of garlic (Allium sativum L.) germplasms available in Nepal based on morphological characters. Genet Resour Crop Evol 53:205–212CrossRefGoogle Scholar
  67. Paredes CM, Becerra VV, González AMI (2008) Low genetic diversity among garlic (Allium sativum L.) accessions detected using random amplified polymorphic DNA (RAPD). Chil J Agric Res 68:3–12CrossRefGoogle Scholar
  68. Peakall R, Smouse PE (2012) GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research—an update. Bioinformatics 28:2537–2539PubMedCentralPubMedCrossRefGoogle Scholar
  69. Pignone D, Hammer K (2013) Conservation, evaluation, and utilization of biodiversity. In: Kole C (ed) Genomics and breeding for climate-resilient crops. Springer, Berlin, pp 9–26CrossRefGoogle Scholar
  70. Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959PubMedCentralPubMedGoogle Scholar
  71. Raziei T, Saghafian B, Paulo A, Pereira L, Bordi I (2009) Spatial patterns and temporal variability of drought in western Iran. Water Resour Manage 23:439–455CrossRefGoogle Scholar
  72. Sharma S, Beharav A, Balyan HS, Nevo E, Gupta PK (2004) Ribosomal DNA polymorphism and its association with geographical and climatic variables in 27 wild barley populations from Jordan. Plant Sci 166:467–477CrossRefGoogle Scholar
  73. Shemesh Mayer E, Winiarczyk K, Błaszczyk L, Kosmala A, Rabinowitch H, Kamenetsky R (2013) Male gametogenesis and sterility in garlic (Allium sativum L.): barriers on the way to fertilization and seed production. Planta 237:103–120PubMedCrossRefGoogle Scholar
  74. Slatkin M (1987) Gene flow and the geographic structure of natural populations. Science 236:787–792PubMedCrossRefGoogle Scholar
  75. Torres AM, Weeden NF, Martín A (1993) Linkage among isozyme, RFLP and RAPD markers in Vicia faba. Theor Appl Genet 85:937–945PubMedCrossRefGoogle Scholar
  76. Turpeinen T, Tenhola T, Manninen O, Nevo E, Nissilä E (2001) Microsatellite diversity associated with ecological factors in Hordeum spontaneum populations in Israel. Mol Ecol 10:1577–1591PubMedCrossRefGoogle Scholar
  77. Turpeinen T, Vanhala T, Nevo E, Nissilä E (2003) AFLP genetic polymorphism in wild barley (Hordeum spontaneum) populations in Israel. Theor Appl Genet 106:1333–1339PubMedGoogle Scholar
  78. Volis S, Mendlinger S, Turuspekov Y, Esnazarov U (2002) Phenotypic and allozyme variation in Mediterranean and desert populations of wild barley, Hordeum spontaneum Koch. Evolution 56:1403–1415PubMedCrossRefGoogle Scholar
  79. Wendelbo P (1971) Alliaceae. In: Rechinger KH (ed) Flora Iranica, Akademische Druck- u. Verlagsanstalt, Graz, p 76Google Scholar
  80. Williams JGK, Kubelik AR, Livak KJ, Rafalski JA, Tingey SV (1990) DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Res 18:6531–6535PubMedCentralPubMedCrossRefGoogle Scholar
  81. Wright S (1931) Evolution in Mendelian populations. Genetics 16:97–159PubMedCentralPubMedGoogle Scholar
  82. Wright S (1943) Isolation by distance. Genetics 28:114–138PubMedCentralPubMedGoogle Scholar
  83. Zhao N, Gao Y, Wang J, Ren A, Xu H (2006) RAPD diversity of Stipa grandis populations and its relationship with some ecological factors. Acta Ecol Sin 26:1312–1318CrossRefGoogle Scholar
  84. Zhao WG, Chung JW, Lee GA, Ma KH, Kim HH, Kim KT, Chung IM, Lee JK, Kim NS, Kim SM, Park YJ (2011) Molecular genetic diversity and population structure of a selected core set in garlic and its relatives using novel SSR markers. Plant Breed 130:46–54CrossRefGoogle Scholar
  85. Zietkiewicz E, Rafalski A, Labuda D (1994) Genome fingerprinting by simple sequence repeat (SSR)-anchored polymerase chain reaction amplification. Genomics 20:176–183PubMedCrossRefGoogle Scholar
  86. Zohary D, Hopf M (2012) Domestication of plants in the Old World, 4th edn. Oxford University Press, New YorkGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Salar Shaaf
    • 1
  • Rajiv Sharma
    • 2
  • Benjamin Kilian
    • 2
  • Alexander Walther
    • 3
  • Hakan Özkan
    • 4
  • Ezzat Karami
    • 1
  • Bahram Mohammadi
    • 5
  1. 1.Department of Agronomy and Plant Breeding, College of Agriculture and Natural Resources, Sanandaj BranchIslamic Azad UniversitySanandajIran
  2. 2.Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Genebank/Genome DiversityGaterslebenGermany
  3. 3.Department of Earth SciencesUniversity of GothenburgGöthenburgSweden
  4. 4.Department of Field Crops, Faculty of AgricultureUniversity of ÇukurovaAdanaTurkey
  5. 5.Department of Horticultural Science, Abhar BranchIslamic Azad UniversityAbharIran

Personalised recommendations