Genetic Resources and Crop Evolution

, Volume 61, Issue 7, pp 1263–1278 | Cite as

Biodiversity and indigenous management of the endangered non-toxic germplasm of Jatropha curcas L. in the Totonacapan (Mexico), and the implications for its conservation

  • Yolanda B. Vera-Castillo
  • Jesús A. Cuevas
  • Ana G. Valenzuela-Zapata
  • Beatriz Urbano
  • Fernando González-Andrés
Research Article

Abstract

Mexico is a center of diversity of Jatropha curcas. Worldwide there are two groups of germplasm, the toxic and the non-toxic, and most of the biofuels programs are based on toxic germplasm. In the mountains of the Totonacapan (Mexico), non-toxic genotypes have been cultivated for human food from ancient times, and now they are in serious risk of being lost because of the “biofuel program”, as well as the ethnobotanical knowledge about this germplasm in the Totonaca culture. The starting hypothesis is that this ethnobotanical knowledge must be related with a high biodiversity of the germplasm of this crop, which is necessary to preserve to avoid genetic erosion. The objective of the work was to assess the biodiversity of the native germplasm using morphological traits, and to analyse socio-economic aspects related with the ethnobotany of this germplasm, to design strategies for the conservation of the germplasm and of the culture linked to it. Other specific objective was to select morphological variables highly discriminant and easy-to-measure, for the characterization of this crop. We selected eight morphological descriptors as the most discriminant, related with the leaves: Length and width of the blade, and length of the petiole; and the fruit: weight, length, diameter, length of the peduncle, and number of fruits per bunch. On the basis of the principal component analysis and canonical discriminant analysis of the morphological data, it was possible to identify as different germplasm pools the six locations sampled, in spite of their proximity, confirming the starting hypothesis that there is high biodiversity of this crop in the region. The pools from Camocuautla and Tuzamapan were the most similar between them, with small fruits and a low number of teeth in the leaves. The germplasm form Jonotla showed also small fruits, but small leaves and a short petiole. Tetelilla’s germplasm showed a high number of teeth in the leaves, big fruits and leaves, and long petiole. The accessions from Ecatlán showed big fruits, low number of fruits per bunch and short fruit’s peduncle, with small leaves and a short petiole. The differential traits of the accession from Zozocolco were a high number of fruits per bunch and a long fruit’s peduncle. Unlike what happened with the germplasm, the socio-economic profile of the farmers did not follow a geographical pattern. Facing the scenario of establishment of the “biofuel program” in the region, we proposed an on farm conservation strategy consisting in the exclusive use of local non-toxic germplasm, which will need the involvement of all the stakeholders, and in special of the local plant nurseries. As this is difficult to achieve, the ex situ conservation has been proposed as an emergency action. Even if the genetic erosion is stopped, it is necessary to develop other companion measures to avoid the loss of the knowledge about the ancestral uses of this crop, as the farmers could prefer to sell the crop for the industry, instead of use at least a part of it for their own food.

Keywords

Ethnobotany Genetic erosion Germplasm conservation Jatropha curcas Landraces Physic nut 

References

  1. Achten WMJ, Maes WH, Aerts R, Verchot L, Trabucco A, Mathijs E, Singh VP, Muys B (2010a) Jatropha: from global hype to local opportunity. J Arid Environ 74(1):164–165. doi:10.1111/j.1757-1707.2010.01049 CrossRefGoogle Scholar
  2. Achten WMJ, Nielsen LR, Aerts R, Lengkeek AG, Kjaer ED, Trabucco A, Hansen JK, Maes WH, Graudal L, Akinnifesi FK, Muys B (2010b) Towards domestication of Jatropha curcas. Biofuels 1(1):91–107. doi:10.4155/bfs.09.4 CrossRefGoogle Scholar
  3. Arellanes Y, Casas A, Arellanes A, Vega E, Blancas J, Vallejo M, Torres I, Rangel-Landa S, Moreno AI, Solís L, Pérez-Negrón E (2013) Influence of traditional markets on plant management in the Tehuacan Valley. J Ethnobiol Ethnomed 9:38. doi:10.1186/1746-4269-9-38 PubMedCrossRefPubMedCentralGoogle Scholar
  4. Cano Asseleih LM (1992) El piñoncillo (Jatropha curcas L.): una especie oleaginosa con potencial de uso agroindustrial. Revista la Ciencia y el Hombre 10:131–138Google Scholar
  5. Christie TC (2001) Use of molecular techniqus in the distinctness, uniformity and stability (DUS) testing of Brassicas: UPOV working group on biochemical and molecular techniques. Scottish agricultural science agency scientific review 1997–2000. Scott Agri Sci Agency 6.2:72–73Google Scholar
  6. CONAFOR (2011) Reglas de Operación del Programa ProArbol 2012. http://dof.gob.mx/nota_detalle.php?codigo=5225984&fecha=21/12/2011. Accessed 10 November 2013
  7. Dahl K, Nabhan GP (1992) Conservation of plant genetic resources. Grassroots efforts in North America. ACTS Press, NairobiGoogle Scholar
  8. Divakara BN, Upadhyay HD, Wani SP, Gowda CLL (2010) Biology and genetic improvement of Jatropha curcas L.: a review. Appl Energy 87(3):732–742. doi:10.1016/j.apenergy.2009.07.013 CrossRefGoogle Scholar
  9. Francis G, Edinger R, Becker K (2005) A concept for simultaneous wasteland reclamation, fuel production, and socio-economic development in degraded areas in India: need, potential and perspectives of Jatropha plantations. Nat Resour Forum 29(1):12–24CrossRefGoogle Scholar
  10. Francis G, Oliver J, Sujatha M (2013) Non-toxic Jatropha plants as a potential multipurpose multi-use oilseed crop. Ind Crop Prod 42:397–401. doi:10.1016/j.indcrop.2012.06.015 CrossRefGoogle Scholar
  11. Fresnedo-Ramírez J, Orozco-Ramírez Q (2013) Diversity and distribution of genus Jatropha in Mexico. Genet Resour Crop Evol 60(3):1087–1104CrossRefGoogle Scholar
  12. González-Andrés F, Casquero P, San-Pedro C, Hernández-Sanchez E (2007) Diversity in white lupin (Lupinus albus L.) landraces from northwest Iberian plateau. Genet Resour Crop Evol 54:27–44CrossRefGoogle Scholar
  13. Govaerts R, Frodin DG, Radcliffe-Smith A, Carter S, Royal Botanic Gardens Kew (2012) World checklist and bibliography of Euphorbiaceae (with Pandaceae). World checklists and bibliographies, vol 4. Royal Botanic Gardens, Kew, Richmond, Surrey, UKGoogle Scholar
  14. Guarino L (1995) Assessing the threat of genetic erosion. In: Guarino L, Rao VR, Reid R (eds) Collecting plant genetic diversity-Technical guidelines. CAB International, Wallingford, pp 67–74Google Scholar
  15. Gubitz GM, Mittelbach M, Trabi M (1999) Exploitation of the tropical oil seed plant Jatropha curcas L. Bioresour Technol 67(1):73–82. doi:10.1016/S0960-8524(99)00069 CrossRefGoogle Scholar
  16. Hammer K (2004) Resolving the challenge posed by agrobiodiversity and plant genetic resources an attempt. Journal of Agriculture and Rural Development in the Tropics and Subtropics, vol 76. Kassel Univ Press, KasselGoogle Scholar
  17. Hammer K, Knüpffer H, Xhuveli L, Perrino P (1996) Estimating genetic erosion in landraces—two case studies. Genet Resour Crop Evol 43:329–336. doi:10.1007/BF00132952 CrossRefGoogle Scholar
  18. He W, King AJ, Khan MA, Cuevas JA, Ramiaramanana D, Graham IA (2011) Analysis of seed phorbol-ester and curcin content together with genetic diversity in multiple provenances of Jatropha curcas L. from Madagascar and Mexico. Plant Physiol Biochem 49(10):1183–1190. doi:10.1016/j.plaphy.2011.07.006 PubMedCrossRefGoogle Scholar
  19. Heller J (1996) Physic nut, Jatropha curcas L. Promoting the conservation and use of underutilized and neglected crops 1. International Plant Genetic Resources Institute, RomeGoogle Scholar
  20. IBM Corp. Released (2010) IBM SPSS statistics for windows, Version 19.0. Armonk, NY, USAGoogle Scholar
  21. Insanu M, Dimaki C, Wilkins R, Brooker J, van der Linde P, Kayser O (2013) Rational use of Jatropha curcas L. in food and medicine: from toxicity problems to safe applications. Phytochem Rev 12(1):107–119. doi:10.1007/s11101-012-9258-0 CrossRefGoogle Scholar
  22. Jaenicke H, Höschle-Zeledon I (eds) (2006) Strategic framework for underutilized plant species research and development. International Centre for Underutilised Crops, Colombo, Sri Lanka and Global Facilitation Unit for Underutilized Species. Rome, ItalyGoogle Scholar
  23. JATROPT (2011) Jatropha curcas Applied and Technological Research on Plant Traits. European Union. http://www.jatropt.eu/. Accessed 10 November 2013
  24. Jones N, Miller JH (1992) Jatropha curcas: a multipurpose species for problematic sites. The World Bank, Washington DCGoogle Scholar
  25. Jongschaap REE, Montes Osorio LR, de Ruijter FJ, van Loo EN (2010) Highlights of the Jatropha curcas Evaluation Program (JEP): crop management and the fate of press (cake and other by (products with its effects on environmental sustainability. International conference on Jatropha curcas 2010. ICJC2010, 1(2 November 2010, Groningen, The Netherlands)Google Scholar
  26. King AJ, He W, Cuevas JA, Freudenberger M, Ramiaramanana D, Graham IA (2009) Potential of Jatropha curcas as a source of renewable oil and animal feed. J Exp Bot 60:2897–2905. doi:10.1093/jxb/erp025 PubMedCrossRefGoogle Scholar
  27. Kumar RS, Parthiban KT, Rao MG (2009) Molecular characterization of Jatropha genetic resources through inter-simple sequence repeat (ISSR) markers. Mol Biol 36(7):1951–1956. doi:10.1007/s11033-008-9404-3 Google Scholar
  28. Liberalino AAA, Bambirra EA, Moraessantos T, Vieira EC (1998) Jatropha curcas L. seeds chemical analysis and toxicity. Arq Biol Tecnol 31:539–550Google Scholar
  29. Makkar HPS, Becker K, Schmook B (1998) Edible provenances of Jatropha curcas from Quintana Roo state of Mexico and effect of roasting on antinutrient and toxic factors in seeds. Plant Foods Hum Nutr 52(1):31–36PubMedCrossRefGoogle Scholar
  30. Nuñez Colín CA, Barrientos Priego AF (2006) Estimación de la variabilidad interna de muestras poblacionales, mediante análisis de componentes principales. Interciencia 31(011):802–806Google Scholar
  31. Núñez-Colín A, Goytia-Jiménez A (2009) Distribution and agroclimatic characterization of potential cultivation regions of physic nut in Mexico. Pesquis Agropecu Bras 44(9):1078–1085CrossRefGoogle Scholar
  32. Pecina-Quintero V, Luis Anaya-Lopez J, Zamarripa Colmenero A, Montes Garcia N, Nunez Colin CA, Solis Bonilla JL, Rocio Aguilar-Rangel M, Gill Langarica HR, Mejia Bustamante DJ (2011) Molecular characterisation of Jatropha curcas L. genetic resources from Chiapas, Mexico through AFLP markers. Biomass Bioenerg 35(5):1897–1905. doi:10.1016/j.biombioe.2011.01.027 CrossRefGoogle Scholar
  33. Ram SG, Parthiban KT, Kumar RS, Thiruvengadam V, Paramathma M (2008) Genetic diversity among Jatropha species as revealed by RAPD markers. Genet Resour Crop Evol 55(6):803–809CrossRefGoogle Scholar
  34. Robinson S, Beckerlegge J (2008) Jatropha in Africa: economic potential. http://www.jatropha.pro/PDF%20bestanden/Jatropha_in_Africa_Economic_Potential-2008.pdf. Accessed 8 November 2013
  35. Santiago LA (2008) Caracterización de piñón (Jatropha curcas L.) del estado de Chiapas por morfología y contenido de aceite de sus semillas. Dissertation, Universidad Autónoma de ChapingoGoogle Scholar
  36. Skutsch M, de los Rios E, Solis S, Riegelhaupt E, Hinojosa D, Gerfert S, Gao Y, Masera O (2011) Jatropha in Mexico: environmental and social impacts of an incipient biofuel program. Ecol Soc 16(4):11. doi:10.5751/ES-04448-160411 Google Scholar
  37. Stamp P, Messmer R, Walter A (2012) Competitive underutilized crops will depend on the state funding of breeding programmes: an opinion on the example of Europe. Plant Breed 131(4):461–464. doi:10.1111/j.1439-0523.2012.01990 CrossRefGoogle Scholar
  38. Steinmann VW (2002) Diversidad y endemismo de la familia Euphorbiaceae en Mexico. Acta Botánica Mexicana 61:61–93Google Scholar
  39. Sunil N, Kumar V, Sujatha M, Rao GR, Varaprasad KS (2013) Minimal descriptors for characterization and evaluation of Jatropha curcas L. germplasm for utilization in crop improvement. Biomass Bioenerg 48:239–249CrossRefGoogle Scholar
  40. SWAFEA (2011) State of the art on alternative fuels in aviation. Sustainable way for alternative fuels and energy in aviation. http://large.stanford.edu/courses/2012/ph240/greenbaum1/docs/SW_WP9_D.9.1-July2011.pdf. Accessed 10 November 2013
  41. Tanya P, Taeprayoon P, Hadkam Y, Srinives P (2011) Genetic diversity among Jatropha and Jatropha-related species based on ISSR markers. Plant Mol Biol Rep 29(1):252–264. doi:10.1007/s11105-010-0220-2 CrossRefGoogle Scholar
  42. Tatikonda L, Wani SP, Kannan S, Beerelli N, Sreedevi TK, Hoisington DA, Devi P, Varshney RK (2009) AFLP-based molecular characterization of an elite germplasm collection of Jatropha curcas L., a biofuel plant. Plant Sci 176(4):505–513. doi:10.1016/j.plantsci.2009.01.006 CrossRefGoogle Scholar
  43. Wilcoxon D, Dove B, McDavid D, Greer D (1995) Image tool version 3.00. User’s guide. University of Texas Health Science Center, San Antonio, p 62Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Yolanda B. Vera-Castillo
    • 1
  • Jesús A. Cuevas
    • 1
  • Ana G. Valenzuela-Zapata
    • 4
  • Beatriz Urbano
    • 2
  • Fernando González-Andrés
    • 3
  1. 1.Departamento de FitotenciaUniversidad Autónoma ChapingoChapingoMexico
  2. 2.Departamento de Ingeniería Agrícola y ForestalUniversidad de ValladolidPalenciaSpain
  3. 3.Instituto de Medio Ambiente, Recursos Naturales y BiodiversidadUniversidad de LeónLeónSpain
  4. 4.Goertz InstitutCharité UniversityBerlinGermany

Personalised recommendations