Advertisement

Genetic Resources and Crop Evolution

, Volume 61, Issue 6, pp 1131–1146 | Cite as

Characterization of a landrace collection for Tomàtiga de Ramellet (Solanum lycopersicum L.) from the Balearic Islands

  • J. Bota
  • M. À. Conesa
  • J. M. Ochogavia
  • H. Medrano
  • D. M. Francis
  • J. Cifre
Research Article

Abstract

Tomàtiga de Ramellet (Ramellet) is a traditional long-storage tomato from the Mediterranean Islands of Mallorca, Menorca, Eivissa (Ibiza), and Formentera (Balearic Islands). To investigate the observed phenotypic and shelf life variability within local varieties, we studied 142 accessions characterized as Ramellet varieties, and 29 accessions representing other local varieties. The 171 accessions constitute a new germplasm collection at the University of Balearic Islands (UIB). The evaluation of the collection demonstrated wide variability in most agronomic, morphological and quality traits of Ramellet accessions and clearly differentiates them from other local varieties with respect to fruit shape, size, fruit composition, and fruit storage. All accessions of Ramellet evaluated have the ripening mutation alcobaça (alc), suggesting an important role for this variant in controlling shelf life. Results of evaluation also showed wide variability between the Ramellet accessions for storage time, suggesting that other traits like fruit size and composition may play a role in fruit conservation. Observed variation within the Ramellet accessions is consistent with a genetically variable population or landrace group. The establishment of this collection will help prevent genetic erosion of this local landrace group and constitute a resource for future investigation and breeding.

Keywords

Collection characterization Genetic diversity Genetic resources Mediterranean tomato landraces Solanumlycopersicum 

Notes

Acknowledgments

This work was supported by the BIA20/07 project of the Government of the Balearic Islands. We are grateful to all the people selflessly giving us fruit and seed to constitute the Ramellet UIB seed collection, which may help in preserving this particular tomato populations selected for centuries by our ancestors. We also thank all the UIB staff and people involved in the field experiments for Ramellet characterization.

Supplementary material

10722_2014_96_MOESM1_ESM.xls (250 kb)
Supplementary material 1: Identification, production parameters, fruit conservation data and morphological traits for the tomato germplasm collection, including 32 Tomato Analyzer parameters (XLS 250 kb)

References

  1. Albertí J, Albertí B (1998) Història Contemporània. In: Banyalbufar i la seva Història vol 1. Ed. Ajuntament de Banyalbufar, pp 193–223Google Scholar
  2. Alcover AM, de Borja-Moll F (1983) Diccionari Català- Valencià-Balear, vol X. Editorial Moll, Palma de MallorcaGoogle Scholar
  3. Baldwin EA, Scott JW, Einstein MA, Malundo TMM, Carr BT, Shewfelt RL, Tandon KS (1998) Relationship between sensory and instrumental analysis for tomato flavor. J Am Soc Hortic Sci 123:906–915Google Scholar
  4. Blanca J, Cañizares J, Cordero L, Pascual L, Diez MJ, Nuez F (2012) Variation revealed by SNP genotyping and morphology provides insight into the origin of the tomato. PLoS ONE 7(10):e48198. doi: 10.1371/journal.pone.0048198 PubMedCentralPubMedCrossRefGoogle Scholar
  5. Boswell VR (1937) Improvement of genetics of tomatoes, peppers, and eggplant. USDA Yearb Agric 1937:176–206Google Scholar
  6. Brewer MT, Lang L, Fujimura K, Dujmovic N, Gray S, der Knaap E (2006) Development of a controlled vocabulary and software application to analyze fruit shape variation in tomato and other plant species. Plant Physiol 141:15–25PubMedCentralPubMedCrossRefGoogle Scholar
  7. Brewer MT, Moyseenko JB, Monforte AJ, van der Knaap E (2007) Morphological variation in tomato: a comprehensive study of quantitative trait loci controlling fruit shape and development. J Exp Bot 58:1339–1349PubMedCrossRefGoogle Scholar
  8. Casals J, Pascual L, Cañizares J, Cebolla-Cornejo J, Casañas J, Nuez F (2011) Genetic basis of long shelf life and variability into Penjar tomato. Genet Resour Crop Evol 59:219–229CrossRefGoogle Scholar
  9. Castilla N, Fereres E (1990) The climate and water requirements of tomatoes in unheated plastic greenhouses. Agric Mediterr 120(3):268–274Google Scholar
  10. Cebolla-Cornejo J, Rosello S, Valcarcel M, Serrano E, Beltran J, Nuez F (2011) Evaluation of genotype and environment effects on taste and aroma flavor components of Spanish fresh tomato varieties. J Agric Food Chem 59(6):2440–2450PubMedCrossRefGoogle Scholar
  11. Centre cultura Sa nostra (1994) Natura en Repòs, La natura morta a Mallorca Segles XVII–XVIII. Ed. Sa Nostra Caixa de Balears, 158 ppGoogle Scholar
  12. Ellis RH, Hong TD, Martin MC, Pérez-Garcia F, Goméz-Campo C (1993) The long term storage of seeds of seventeen crucifers at very low moisture contents. Plant Var Seeds 6:75–81Google Scholar
  13. Espallardo C, Martorell A, March J, Escalona JM, Luna JM, Garau C (2006) Memòria d’activitats de les experiències en finques col laboradores. Conselleria d’Agricultura i Pesca del Govern de les Illes Balears, Palma de MallorcaGoogle Scholar
  14. Galmés J, Conesa MÀ, Ochogavía JM, Perdomo JA, Francis DM, Ribas-Carbó M, Savé R, Flexas J, Medrano H, Cifre J (2011) Physiological and morphological adaptations in relation to water use efficiency in Mediterranean accessions of Solanum lycopersicum. Plant, Cell Environ 34:245–260CrossRefGoogle Scholar
  15. Galmés J, Ochogavía JM, Gago J, Roldán EJ, Cifre J, Conesa MÀ (2013) Leaf responses to drought stress in Mediterranean accessions of Solanum lycopersicum: anatomical adaptations in relation to gas-exchange parameters. Plant, Cell Environ 36:920–935CrossRefGoogle Scholar
  16. Gepts P (2002) A comparison between crop domestication, classical plant breeding, and genetic engineering. Crop Sci 42:1780–1790CrossRefGoogle Scholar
  17. Gianquinto G, Ceccon P, Giovanardi R (1990) Evapotranspiration, growth and yield of fresh market tomato (Lycopersicon esculentum Mill.) at two irrigation levels. Acta Hortic 278:579–586Google Scholar
  18. Gonzalo MJ, van der Knaap E (2008) A comparative analysis into the genetic bases of morphology in tomato varieties exhibiting elongated fruit shape. Theor Appl Genet 116:647–656PubMedCrossRefGoogle Scholar
  19. Habsburg-Lorena LS (1989) Die Eigentlichen Balearen [1871] Die Balearen in Wort und Bild geschildert, Leipzig: Brockhaus, vol VI. Traducción castellana (1982–1993): Las Baleares por la palabra y el grabado. Caja de Ahorros de Baleares “Sa Nostra”, Palma de MallorcaGoogle Scholar
  20. Hawtin G, Iwanaga M, Hodgkin T (1997) Genetic resources in breeding for adaptation. In: Tigerstedt PMA (ed) Adaptation in plant breeding. Kluwer, Dordrecht, pp 277–288CrossRefGoogle Scholar
  21. Jenkins JA (1948) The origin of the cultivated tomato. Econ Bot 2:379–392CrossRefGoogle Scholar
  22. Kessler S, Kim M, Pham T, Weber N, Sinha N (2001) Mutations altering leaf morphology in tomato. Int J Plant Sci 162(3):475–492CrossRefGoogle Scholar
  23. Lanahan MB, Yen H-C, Giovannoni JJ, Klee HJ (1994) The never-ripe mutation blocks ethylene perception in tomato. Plant Cell 6:521–530PubMedCentralPubMedCrossRefGoogle Scholar
  24. Leal NR, Tabim ME (1974) Testes de conservaçao natural pos colheita, alem dos 300 dias, de frutos de alguns cultivares de tomateiro (Lycopersicon esculentum Mill.). E. hibridos destes com “alcobaca”. Rev Ceres 21:310–328Google Scholar
  25. Lobo M, Basset MJ, Hannah LC (1984) Inheritance and characterization of the fruit ripening mutation in ‘alcobaca’ tomato. J Am Soc Hortic Sci 109:741–745Google Scholar
  26. Mutschler MA (1984) Inheritance and linkage of the Alcobaca ripening mutant in tomato. J Am Soc Hortic Sci 109(4):500–503Google Scholar
  27. Mutschler MA, Wolfe DW, Cobb ED, Yourstone KS (1992) Tomato fruit quality and shelf life in hybrid heterozygous for the alc ripening mutants. HortSci 27(4):352–355Google Scholar
  28. Peralta IE, Spooner DM (2007) History, origin and early cultivation of tomato (Solanaceae). In: Razdan MK, Mattoo AK (eds) Genetic improvement of Solanaceous crops, vol 2., TomatoScience Publishers, Enfield, pp 1–27Google Scholar
  29. R Core Team (2013) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0. http://www.R-project.org/
  30. Ranc N, Muños S, Santoni S, Causse M (2008) A clarified position for Solanum lycopersicum var. cerasiforme in the evolutionary history of tomatoes (solanaceae) BMC Plant Biology 8(1):130. doi: 10.1186/1471-2229-8-130. http://www.biomedcentral.com/1471-2229/8/130 Google Scholar
  31. Rick CM (1995) Tomato (Lycopersicon esculentum). In: Smartt J, Simmonds NW (eds) Evolution of crop plants, 2nd edn. Longman, London, pp 452–457Google Scholar
  32. Rodríguez GR, Muños S, Anderson C, Sim SC, Michel A, Causse M, Gardener BBM, Francis D, van der Knaap E (2011) Distribution of SUN, OVATE, LC and FAS in the tomato germplasm and the relationship to fruit shape diversity. Plant Physiol 156(1):275–285PubMedCentralPubMedCrossRefGoogle Scholar
  33. Saladié M, Matas AJ, Isaacson T et al. (2007) A reevaluation of the key factors that influence tomato fruit softening and integrity. Plant Physiol 144:1012–1028PubMedCentralPubMedCrossRefGoogle Scholar
  34. Sim SC, Robbins MD, Chilcott C, Zhu T, Francis DM (2009) Oligonucleotide array discovery of polymorphisms in cultivated tomato (Solanum lycopersicum L.) reveals patterns of SNP variation associated with breeding. BMC Genom 10:466CrossRefGoogle Scholar
  35. Sim SC, Van Deynze A, Stoffel K, Douches DS, Zarka D, Ganal MW, Chetelat RT, Hutton SF, Scott JW, Gardner RG, Panthee DR, Mutschler M, Myers JR, Francis DM (2012) High-density SNP genotyping of tomato (Solanum lycopersicum L.) reveals patterns of genetic variation due to breeding. PLoS ONE 7(9):e45520. doi: 10.1371/journal.pone.0045520 PubMedCentralPubMedCrossRefGoogle Scholar
  36. Vrebalov J, Ruezinsky D, Padmanabhan V, White R, Medrano D, Drake R, Schuch W, Giovannoni JJ (2002) A MADS-box gene necessary for ripening at the tomato ripening-inhibitor (rin) locus. Science 296:343–346PubMedCrossRefGoogle Scholar
  37. Vrebalov J, Medrano D, Noensie E, Tanksley SD, Giovannoni JJ (2004) Lycopersicon esculentum NAC domain protein (NAC–NOR) mRNA, complete cds. NCBI Web. http://www.ncbi.nlm.nih.gov/nuccore/AY573802.1. Accessed 13 Feb 2014
  38. Vrebalov J, Medrano D, Noensie E, Tanksley SD, Giovannoni JJ (2009) Solanum lycopersicum NAC domain protein (NAC–NOR) gene, NAC–NOR–NOR allele, complete cds. NCBI Web. http://www.ncbi.nlm.nih.gov/nuccore/AY573803.2. Accessed 13 Feb 2014
  39. Walter JM (1967) Hereditary resistance to disease in tomato. Annu Rev Phytopathol 5:131–162CrossRefGoogle Scholar
  40. Wilkinson JQ, Lanahan MB, Yen H-C, Giovannoni JJ, Klee HJ (1995) An ethylene-inducible component of signal transduction encoded by never-ripe. Science 270:1807–1809PubMedCrossRefGoogle Scholar
  41. Zeven AC (1998) Landraces: a review of definitions and classifications. Euphytica 104:127–139CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • J. Bota
    • 1
  • M. À. Conesa
    • 2
  • J. M. Ochogavia
    • 2
  • H. Medrano
    • 2
  • D. M. Francis
    • 3
  • J. Cifre
    • 2
  1. 1.Institut de Recerca i Formació Agrària i Pesquera (IRFAP)Conselleria d’Agricultura Medi Ambient i Territori, Govern de les Illes BalearsPalmaSpain
  2. 2.Grup de Recerca en Biologia de les Plantes en Condicions MediterràniesUniversitat de les Illes Balears (UIB)PalmaSpain
  3. 3.Department of Horticulture and Crop Science, Ohio Agricultural Research and Development CenterThe Ohio State UniversityWoosterUSA

Personalised recommendations