Advertisement

Genetic Resources and Crop Evolution

, Volume 60, Issue 8, pp 2227–2240 | Cite as

Phylogenetic relationships among Triticum L. and Aegilops L. species as genome progenitors of bread wheat based on sequence diversity in trnT-F region of chloroplast DNA

  • Ayten Dizkirici
  • Cigdem Kansu
  • Sertac Onde
  • Melahat Birsin
  • Murat Özgen
  • Zeki KayaEmail author
Research Article

Abstract

Cultivated wheat, (Triticum aestivum L.), is one of the most important food crops in the world. The Aegilops L. genus is frequently utilized by plant breeders for improving the current wheat cultivars due to their close relationships. Therefore, understanding the phylogenetic relationships among the species of these genera is not only valuable for plant taxonomy, but also for plant breeding efforts. The presented phylogenetic analysis was based on the sequences of trnT-F chloroplast DNA containing three non-coding sub-regions. Twelve genotypes belonging to four species of Triticum L. genus and twenty-four genotypes belonging to eight species of Aegilops genus were used in the current study. The results postulated a close genetic relationship between diploid Aegilops species containing the BB genome and polyploid Triticum species. With the exception of Aegilops cylindrica Host (CCDD), all other Aegilops species having the CC genome were alienated from Aegilops speltoides Tausch (BB) and clustered together. These two clusters joined by a third cluster including the AA genome containing diploid Triticum species.

Keywords

Aegilops Genome evolution Molecular phylogeny Triticum trnT-F 

References

  1. Badaeva ED, Badaeva NS, Gill BS, Filatenko AA (1994) Intraspecific karyotype divergence in Triticum araraticum (Poaceae). Plant Syst Evol 192:117–145CrossRefGoogle Scholar
  2. Bakhshi B, Aghaei MJ, Bihamta MR, Darvish F, Zarifi E (2010) Ploidy determination of Aegilops cylindrica Host accessions of Iran by using flow cytometry and chromosome counting. Iran J Bot 16(2):258–266Google Scholar
  3. Baum BR, Edwards T, Johnson DA (2009) Phylogenetic relationships among diploid Aegilops species inferred from 5S rDNA units. Mol Phylogenet Evol 53:34–44PubMedCrossRefGoogle Scholar
  4. Bibi S, Dahot MU, Khan IA, Khatrı A, Naqvi MH (2009) Study of genetic diversity in wheat (Triticum aestivum L.) using random amplified polymorphic DNA (RAPD) markers. Pak J Bot 41(3):1023–1027Google Scholar
  5. Bordbar F, Rahiminejad MR, Saeidi H, Blattner FR (2011) Phylogeny and genetic diversity of D-genome species of Aegilops and Triticum (Triticeae, Poaceae) from Iran based on microsatellites, ITS, and trnL-F. Plant Syst Evol 291:117–131CrossRefGoogle Scholar
  6. Caligari PDS, Brandham PE (eds) (2001) Wheat taxonomy: the legacy of John Percival, Linnean Special Issue 3. Linnean Society, London, p 190Google Scholar
  7. Cenkci S, Yildiz M, Konuk M, Eren Y (2008) RAPD analyses of some wild Triticum L. and Aegilops L. species and wheat cultivars in Turkey. Acta Biol Cracovien Botan 50(1):35–42Google Scholar
  8. Chen K, Gray JC, Wildman SG (1975) Fraction 1 protein and the origin of polyploid wheats. Science 190:1304–1306CrossRefGoogle Scholar
  9. Davis PH (1985) Flora of Turkey and the east Aegean Island, vol 9. Edinburgh University Press, Edinburgh, pp 150–268Google Scholar
  10. Davis PH, Mill RR, Tan K (1988) Flora of Turkey and the east Aegean Islands (suppl.), vol 10. Edinburgh University Press, EdinburghGoogle Scholar
  11. Doyle JJ, Doyle JL (1987) A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem Bull 19:11–15Google Scholar
  12. Feldman M (1978) New evidence on the origin of the B genome of wheat. In: Ramanujam S (ed) Proceedings of 5th international wheat genetics symposium, vol 1. Indian Society of Plant Genetics and Breeding, New Delhi, pp 120–132Google Scholar
  13. Friebe B, Kim NS, Kuspira J, Gill BS (1990) Genetic and cytogenetic analyses of the A-genome of Triticum monococcum. VI. Production and identification of primary trisomic using the C-banding technique. Genome 33:542–555CrossRefGoogle Scholar
  14. Friebe B, Tuleen N, Jiang J, Gill BS (1993) Standard karyotype of Triticum longissimum and its cytogenetic relationship with T. aestivum. Genome 36:731–742PubMedCrossRefGoogle Scholar
  15. Gill BS, Friebe B (2002) Cytogenetics, phylogeny and evolution of cultivated wheats. In: Curtis BC, Rajaram S, Gómez Macpherson H (eds) Bread wheat: improvement and production. Food and Agriculture Organization of the United Nations, Rome, pp 71–88Google Scholar
  16. Giorgi D, D’Ovidio R, Tanzarella OA, Porceddu E (2002) RFLP analysis of Aegilops species belonging to the Sitopsis section. Genet Resour Crop Evol 49:145–151CrossRefGoogle Scholar
  17. Golovnina KA, Glushkov SA, Blinov AG, Mayorov VI, Adkison LR, Goncharov NP (2007) Molecular phylogeny of the genus Triticum L. Plant Syst Evol 264:195–216CrossRefGoogle Scholar
  18. Goryunova SV, Kochieva EZ, Chikida NN, Pukhalskyi VA (2004) Phylogenetic relationships and intraspecific variation of D-Genome Aegilops L. as revealed by RAPD analysis. Russ J Genet 40(5):515–523CrossRefGoogle Scholar
  19. Gulbitti-Onarici S, Sancak C, Sumer S, Ozcan S (2009) Phylogenetic relationships of some wild wheat species based on the internal transcribed spacer sequences of nrDNA. Curr Sci 96:794–800Google Scholar
  20. Guner A, Ozhatay N, Ekim T, Baser KHC (2000) Flora of Turkey and the east Aegean Islands (suppl.), vol 11. Edinburgh University Press, EdinburghGoogle Scholar
  21. Hammer K, Filatenko AA, Pistrick K (2011) Taxonomic remarks on Triticum L. and ×Triticosecale Wittm. Genet Resour Crop Evol 58:3–10CrossRefGoogle Scholar
  22. Harlan JR (1992) Crops and Man. American Society of Agronomy, Inc. and Crop Science Society of America, Inc. Madison, Wisconsin, p 284Google Scholar
  23. Huang S, Sirikhachornkit A, Su X, Faris J, Gill B, Haselkorn R, Gornicki P (2002) Genes encoding plastid acetyl-CoA carboxylase and 3-phosphoglycerate kinase of the Triticum-Aegilops complex and the evolutionary history of polyploid wheat. Proc Natl Acad Sci USA 99:8133–8138PubMedCrossRefGoogle Scholar
  24. Kelchner SA (2000) The evolution of non-coding chloroplast DNA and its application in plant systematic. Ann Mo Bot Gard 87:482–498CrossRefGoogle Scholar
  25. Kihara H (1924) Cytologische und genetische Studien bei wichtigen Getreidearten mit besonderer Rücksicht auf das Verhalten der Chromosomen und die Sterilität in den Bastarden. Mem Coll Sci Kyoto Imp Univ Ser B1:1–200Google Scholar
  26. Kilian BK, Mammen EM, Sharma R, Graner A, Salamini F, Hammer K, Özkan H (2011) Aegilops. In: Kole C (ed) Wild crop relatives: genomic and breeding resources-Cereals. Springer Verlag, Berlin Heidelberg, pp 1–76Google Scholar
  27. Kimber G, Zhao YH (1983) The D genome of the Triticeae. Can J Genet Cytol 25:581–589Google Scholar
  28. Korpelainen H (2004) The evolutionary processes of mitochondrial and chloroplast genomes differ from those of nuclear genomes. Naturwissenschaften 91:505–518PubMedCrossRefGoogle Scholar
  29. Lilienfeld F, Kihara H (1934) Genomanalyse bei Triticum und Aegilops. V. Triticum timopheevi Zhuk. Cytologia 6:87–122CrossRefGoogle Scholar
  30. Makarevich I, Golovnina K, Scherbik S, Blinov A (2003) Phylogenetic relationships of the Siberian Iris species inferred from noncoding chloroplast DNA sequences. Int J Pl Sci 164:229–237CrossRefGoogle Scholar
  31. Mandy G (1970) Pflanzenzüchtung - kurz und bündig. VEB Deutscher Landwirtschaftsverlag, Berlin, p 336Google Scholar
  32. Mann SS (1976) Cytoplasmic homology between Aegilops squarrosa L. and Ae. cylindrica host. Crop Sci 16:757–761CrossRefGoogle Scholar
  33. Mason-Gamer RJ, Orme NL, Anderson CM (2002) Phylogenetic analysis of North American Elymus and the monogenomic Triticeae (Poaceae) using three chloroplast DNA data sets. Genome 45(6):991–1002PubMedCrossRefGoogle Scholar
  34. Ogihara Y, Isono K, Kojima T, Endo A, Hanaoka M, Shiina T, Terachi T, Utsugi S, Murata M, Mori N, Takumi S, Ikeo K, Gojobori T, Murai R, Murai K, Matsuoka Y, Ohnishi Y, Tajiri H, Tsunewaki K (2002) Structural features of a wheat plastome as revealed by complete sequencing of chloroplast DNA. Mol Genet Genomics 266(5):740–746PubMedCrossRefGoogle Scholar
  35. Ozgen M (1982) Buğday × Aegilops Melezlerinde Sarıpasa (Puccinia striiformis West.) Dayanıklılığın Kalıtımı Üzerinde Araştırmalar. Dissertation, Ankara UniversityGoogle Scholar
  36. Özkan H, Willcox G, Graner A, Salamini F, Kilian B (2011) Geographic distribution and domestication of wild emmer wheat (Triticum dicoccoides). Genet Resour Crop Evol 58:11–53CrossRefGoogle Scholar
  37. Patterson J, Chamberlain B, Thayer D (2004–2006) Finch TV Version 1.4.0Google Scholar
  38. Petersen G, Seberg O, Yde M, Berthelsen K (2006) Phylogenetic relationships of Triticum and Aegilops and evidence for the origin of the A, B, and D genomes of common wheat (Triticum aestivum). Mol Phylogenet Evol 39:70–82PubMedCrossRefGoogle Scholar
  39. Sakamura T (1918) Kurze Mitteilung über die Chromosomenzahlen u. des Verwandtschaftsverhältnisse der Triticum-Arten. Bot Mag (Tokyo) 32:151–154Google Scholar
  40. Sasanuma T, Chabane K, Endo TR, Valkoun J (2004) Characterization of genetic variation in and phylogenetic relationships among diploid Aegilops species by AFLP: incongruity of chloroplast and nuclear data. Theor Appl Genet 108:612–618PubMedCrossRefGoogle Scholar
  41. Taberlet P, Gielly L, Pautou G, Bouvet J (1991) Universal primers for amplification of three non-coding regions of chloroplast DNA. Plant Mol Biol 17:1105–1109PubMedCrossRefGoogle Scholar
  42. Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol. doi: 10.1093/molbev/msr121 Google Scholar
  43. Tanksley SD, McCouch SR (1997) Seed banks and molecular maps: unlocking genetic potential from the wild. Science 277:1063–1066PubMedCrossRefGoogle Scholar
  44. Tsunewaki K (1989) Plasmon diversity in Triticum and Aegilops and its implication in wheat evolution. Genome 31:143–154CrossRefGoogle Scholar
  45. van Slageren MW (1994) Wild wheats: a monograph of Aegilops L. and Amblyopyrum (Jaub. & Spach) Eig. (Poaceae). ICARDA/Wageningen Agricultural University Papers 94(7). I:xiv, 1–512Google Scholar
  46. Vedel F, Quétier F, Dosba F, Doussinault G (1978) Study of wheat phylogeny by Eco RI analysis of chloroplastic and mitochondrial DNAs. Plant Sci Lett 13:97–102CrossRefGoogle Scholar
  47. von Buren M (2001) Polymorphisms in two homologous γ-gliadin genes and the evolution of cultivated wheat. Genet Resour Crop Evol 48:205–220CrossRefGoogle Scholar
  48. Wang GZ, Miyashita NT, Tsunewaki K (1997) Plasmon analyses of Triticum (wheat) and Aegilops: PCR–single-strand conformational polymorphism (PCR-SSCP) analyses of organellar DNAs. Proc Natl Acad Sci 94:14570–14577PubMedCrossRefGoogle Scholar
  49. Wang C, Shi SH, Wang JB, Zhong Y (2000) Phylogenetic relationships of diploid species in Aegilops inferred from the ITS sequences of nuclear ribosomal DNA. Acta Bot Sinica 42:507–511 (In Chinese)Google Scholar
  50. Zaharieva M, Prosperi J, Monneveux P (2004) Ecological distribution and species diversity of Aegilops L. genus in Bulgaria. Biodivers Conserv 13:2319–2337CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Ayten Dizkirici
    • 1
    • 3
  • Cigdem Kansu
    • 1
  • Sertac Onde
    • 1
  • Melahat Birsin
    • 2
  • Murat Özgen
    • 2
  • Zeki Kaya
    • 1
    Email author
  1. 1.Department of Biological SciencesMiddle East Technical UniversityAnkaraTurkey
  2. 2.Department of Field Crops, Faculty of AgricultureAnkara UniversityAnkaraTurkey
  3. 3.Department of BiologyYuzuncu Yil UniversityVanTurkey

Personalised recommendations