Genetic Resources and Crop Evolution

, Volume 60, Issue 6, pp 1801–1815 | Cite as

Ecogeographic analysis of pea collection sites from China to determine potential sites with abiotic stresses

  • Ling Li
  • Robert J. Redden
  • Xuxiao Zong
  • J. D. Berger
  • Sarita Jane Bennett
Research Article

Abstract

Pea (Pisum sativum L.) is grown widely throughout China and has undergone natural selection throughout its agricultural range over 2,000 years. Here we characterize collection site habitats to develop an understanding of the key selection pressures likely to be imposed by each environment to facilitate the investigation of specific adaptation. We characterized 240 collection sites of 529 pea landraces, across 25 provinces and 3 municipalities of China comprising the main pea cropping regions for climatic variables. Multivariate analyses showed that collection sites tended to cluster along geographic and abiotic stress clines. Spring sown sites and winter sown sites were clearly separated into 6 and 7 habitat type clusters respectively. In addition, regions which experience extreme abiotic stresses of frost, drought and high temperature in the reproductive period for pea landraces, were identified as targets for germplasm to be tested for respective tolerances to these stresses.

Keywords

Adaptation Ecogeography Habitat characterisation Pea landraces Pisum sativum 

Notes

Acknowledgments

The senior author would like to acknowledge the Vavilov-Frankel Fellowship support from Bioversity International, for funding this study, and the Australian Temperate Field Crops Collection (ATFCC) at the Department of Primary Industry (DPI) for providing the work place. I thank my supervisor Dr. Robert Redden for support and help, Dr. Jens Berger and Dr. Sarita Jane Bennett for analytical assistance.

References

  1. Bao S, He Y, Zong X, Wang L, Li L, Enneking D, Rose IA, Leonforte T, Redden RJ, Paull J (2009) Collection of pea (Pisum sativum) and faba bean (Vicia faba) germplasm in Yunnan. Plant Genet Resour Newsl FAO Biodivers 156:11–22Google Scholar
  2. Berger JD (2007) Ecogeographic and evolutionary approaches to improving adaption of autumn-sown chickpea (Cicer arietinum L.) to terminal drought: the search for reproductive chilling tolerance. Field Crops Res 104:112–122CrossRefGoogle Scholar
  3. Berger JD, Turner NC, Siddique KHM, Knights EJ, Brinsmead RB, Mock I, Edmondson C, Khan TN (2004) Genotype by environment studies across Australia reveal the importance of phenology for chickpea (Cicer arietinum L.) improvement. Aust J Agric Res 55:1071–1084CrossRefGoogle Scholar
  4. Berger JD, Ali M, Basu PS, Chaudhary BD, Chaturvedi SK, Deshmukh PS, Dharmaraj PS, Dwivedi SK, Gangadhar GC, Gaur PM, Kumar J, Pannu RK, Siddique KHM, Singh DN, Singh DR, Singh SJ, Turner NC, Yadav HS, Yadav SS (2006) Genotype by environment studies demonstrate the critical role of phenology in adaptation of chickpea (Cicer arietinum L.) to high and low yielding environments of India. Field Crops Res 98:230–244CrossRefGoogle Scholar
  5. Berger JD, Adhikari K, Wilkinson D, Buirchell B, Sweetingham MW (2008) Ecogeography of the old world lupin: 1) Ecotypic variation in yellow lupin (Lupinus luteus L.). Aust J Agric Res 59:691–701CrossRefGoogle Scholar
  6. Berger JD, Milroy SP, Turner NC, Siddique KHM, Imtiaz M, Malhotra R (2011) Chickpea evolution has selected for contrasting phenological mechanisms among different habitats. Euphytica 180:1–15CrossRefGoogle Scholar
  7. Berger JD, Kumar S, Nayyar H, Street K, Sandhu JS, Henzell JM, Kaur J, Clarke HC (2012) Temperature-stratified screening of chickpea (Cicer arietinum L.) genetic resource collections reveals very limited reproductive chilling tolerance compared to its annual wild relatives. Field Crops Res 126:119–129CrossRefGoogle Scholar
  8. Chenbang H, Yujiao L, Kunlun W, Mingyi Y, Qinhua F, Yang L, Qingbiao Y, Jianping G, Rose IA, Redden RJ, Enneking D (2009) Collecting and surveying landraces of pea (Pisum sativum) and faba bean (Vicia faba) in Qinghai province of China. Plant Genet Resour Newsl FAO Biodivers 156:1–10Google Scholar
  9. De la Pena RC, Ebert AW, Gniffke PA, Hanson P, Symonds RC (2011) Genetic adjustment to changing climates: vegetables. In: Yadav SS, Redden RJ, Hatfield JL, Lotze-Campen H, Hall AE (eds) Crop adaptation to climate change. Wiley, USA, pp 396–410Google Scholar
  10. Desborough P, Lawrence P, Redden R, Zong X (2002) Characterisation of response to temperature and photoperiod in a core collection of adzuki bean from China. In: McComb J (ed) ‘Plant breeding for the 11th millennium’. Proceedings of 12th Australasian plant breed. conference, Perth, Australia. September 15–20, pp 565–568Google Scholar
  11. Ellis RH, Lawn RJ, Summerfield RJ, Qi A, Roberts EH, Chay PM, Brouwer JB, Rose JL, Yeates SJ, Sandover S (1994) Towards the reliable prediction of time to flowering in six annual crops. V. Chickpea (Cicer arietinum). Exp Agric 30:271–282CrossRefGoogle Scholar
  12. Frankel OH, Bennett E (1970) Genetic resources. In: Frankel OH, Bennett E (eds) Genetic resources in plants—their exploration and conservation. IBP handbook No 11. Blackwell Scientific Publications, Oxford and Edinburgh, pp 7–17Google Scholar
  13. Hall AE (2011) Breeding cowpea for future climates. In: Yadav SS, Redden RJ, Hatfield JL, Lotze-Campen H, Hall AE (eds) Crop adaptation to climate change. Wiley, USA, pp 340–355Google Scholar
  14. Hamdi A, Kusmenoglu I, Erskine W (1996) Sources of winter hardiness in wild lentil. Genet Resour Crop Evol 43:63–67CrossRefGoogle Scholar
  15. Hijmans RJ, Guarino L, Cruz M, Rojas E (2001) Computer tools for spatial analysis of plant genetic resources data: 1. DIVA-GIS. Plant Genet Resour Newsl 127:15–19Google Scholar
  16. Hijmans RJ, Cameron SE, Parra JL, Jones PG, Jarvis A (2005) Very high resolution interpolated climate surfaces for global land areas. Int J Clim 25:1965–1978CrossRefGoogle Scholar
  17. Imtiaz M, Malhotra RS, Yadav SS (2011) Genetic adjustment to changing climates: Chickpea. In: Yadav SS, Redden RJ, Harfield JL, Lotze-Campen H, Hall AE (eds) Crop adaptation to climate change. Wiley, USA, pp 251–268Google Scholar
  18. Lejeune-Henaut I, Hanocq E, Gethencourt L et al (2008) The flowering locus Hr colocalizes with a major QTL affecting winter frost tolerance in Pisum sativum L. Theor Appl Genet 116:1105–1116PubMedCrossRefGoogle Scholar
  19. Makesheva RKh (1973) The Pea (Gorokh). Translation for USDA, c/o US Department Commerce, (trans: Sharma BR, Kothekar VS). Kolos Publishers, Leningrad p 267Google Scholar
  20. New M, Lister D, Hulme M, Makin I (2002) A high-resolution data set of surface climate over global land areas. Clim Res 21:1–25CrossRefGoogle Scholar
  21. Redden R, vanLeur J, Zong X, Bao S, Yujiao L, Paull J, Leonforte T (2008) Evaluation and utilisation of pea and faba bean germplasm from China. Australian Society of Agronomy Conference, September 2008, Adelaide, South Australia. www.regional.org.au/au//pdf/asa/2008/5804_redden.pdf
  22. Redden RJ, Basford KE, Kroonenberg PM, Islam A, Ellis R, Wang S, Cao Y, Zong X, Wang X (2009) Variation in adzuki bean (Vigna angularis) germplasm grown in China. Crop Sci 49(3):771–782CrossRefGoogle Scholar
  23. Smýkal P, Kenicer G, Flavell AJ, Corander J, Kosterin O, Redden RJ, Ford R, Coyne CJ, Maxted N, Ambrose MJ, Ellis THN (2010) Phylogeny, phylogeography and genetic diversity of the Pisum genus. Plant Genet Resour Charact Util 9:4–18CrossRefGoogle Scholar
  24. Stoddard FL, Balko C, Erskine W, Khan WR, Link W, Sarker A (2006) Screening techniques and sources of resistance to abiotic stresses in cool season legumes. Euphytica 147:167–186CrossRefGoogle Scholar
  25. Zong X (2008) Genetic diversity of Pisum spp. germplasm resources and their core collection. PhD-thesis. CAAS, Beijing, ChinaGoogle Scholar
  26. Zong X, Guan J, Wang S, Liu Q, Redden R, Ford R (2008) Genetic diversity and core collection of alien Pisum sativum L. Germplasm. Acta Agron Sin 34(9):1518–1528CrossRefGoogle Scholar
  27. Zong X, Redden R, Liu Q, Wang S, Guan J, Liu J, Xu Y, Gu J, Yan L, Ades P, Ford R (2009) Analysis of a diverse global Pisum sp. collection and comparison to a Chinese local P. sativum collection with microsatellite markers. Theor Appl Genet 118(2):193–204PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Ling Li
    • 1
  • Robert J. Redden
    • 2
  • Xuxiao Zong
    • 3
  • J. D. Berger
    • 4
  • Sarita Jane Bennett
    • 5
  1. 1.Liaoning Institute of Cash CropsLiaoning Academy of Agricultural SciencesLiaoyangChina
  2. 2.Australian Temperate Field Crops Collection, Grains Innovation ParkThe Department of Primary IndustriesHorshamAustralia
  3. 3.Institute of Crop Science/National Key Facility for Crop Gene Resources and Genetic ImprovementChinese Academy of Agricultural SciencesBeijingChina
  4. 4.CSIRO Plant IndustryWembleyAustralia
  5. 5.Department of Environment and AgricultureCurtin UniversityPerthAustralia

Personalised recommendations