Genetic Resources and Crop Evolution

, Volume 61, Issue 4, pp 721–740 | Cite as

Farmers’ unconscious incorporation of sexually-produced genotypes into the germplasm of a vegetatively-propagated crop (Oxalis tuberosa Mol.)

  • Maxime Bonnave
  • Guillaume Bleeckx
  • Jorge Rojas Beltrán
  • Peter Maughan
  • Marie-Christine Flamand
  • Franz Terrazas
  • Pierre Bertin
Research Article


Clonal propagation and sexual reproduction have diametrically opposite effects on the genetic diversity of crops, permitting, respectively, the conservation of existing genotypes or the creation of new diversity. Oxalis tuberosa Mol. (“oca”) exhibits a heteromorphic self-incompatibility system and is traditionally propagated clonally but is capable of sexual reproduction. In this study we investigated the influence of sexual reproduction on the in situ genetic diversity of a vegetatively propagated crop, taking oca as a model plant. The occurrence of sexual reproduction in natural conditions and its use by farmers were studied through surveys and interviews, while the effect of sexual reproduction on the in situ genetic diversity was evaluated using microsatellite analysis. Plantlets issuing from sexual reproduction were encountered in five of the nine visited communities. The interviews indicated that six out of the nine interviewed farmers were likely, albeit unconsciously, incorporating clonal lineages issuing from sexual reproduction into their varieties. The microsatellite analysis indicated a strong effect of such incorporations on the genetic diversity of the plant varieties. Assignment tests confirmed the allogamy of oca. “Complex varieties”, made up of individuals exhibiting genetically differentiated genotypes, were most likely the result of recent crossing. Unconscious incorporation of new genotypes into the cultivated oca germplasm is therefore highly likely, raising the question of its potential occurrence in other vegetatively propagated crops. These findings could have an important effect on the adaptive potential of oca, especially in light of the genetic erosion that threatens the crop.


Genetic diversity Microsatellite Oxalis tuberosa Sexual reproduction Traditional crop management 



The authors would like to thank all the farmers who contributed to this study, especially Don Felix Veizaga, Don Felix Fernandez and Don Maximo Vargas, for kindly giving access to their knowledge and to their oca germplasm. This work was supported by fellowships from Fonds pour la formation à la Recherche dans l’Industrie et dans l’Agriculture and from Fonds Spéciaux de Recherche (to M.B.).


  1. Academia mayor de la lengua quechua (2005) Diccionario quechua-español-quechua. Gobierno regional de Cusco, Cusco, p 479Google Scholar
  2. Alandia BS (1967) Producción de semilla sexual en oca. Sayana (Bolivia) 2:12–15Google Scholar
  3. Arbizu C, Tapia M (1992) Tubérculos andinos. In: Hernández Bermajo JE, León S (eds) Cultivos marginados: otra perspectiva de 1492. FAO, Rome, pp 147–161Google Scholar
  4. Arnaud-Haond S, Duarte CM, Alberto F, Serrão EA (2007) Standardizing methods to adress clonality in population studies. Mol Ecol 16:5115–5139PubMedCrossRefGoogle Scholar
  5. Barrett S (1993) The evolutionary biology of tristyly. In: Futuyma D, Antonovics J (eds) Oxford surveys in evolutionary biology, vol 9. Oxford University Press, Oxford, pp 283–326Google Scholar
  6. Barrett S, Shore J (2008) New insights on heterostyly: comparative biology, ecology and genetics. In: Franklin-Tong VE (ed) Self-incompatibility in flowering plants—evolution, diversity, and mechanisms. Springer, Berlin, pp 4–32Google Scholar
  7. Bianco M, Sachs C (1998) Growing oca, ulluco, and mashua in the Andes: socioeconomic differences in cropping practices. Agric Hum Values 15:267–280CrossRefGoogle Scholar
  8. Blair MW, Panaud O, McCouch SR (1999) Inter-simple sequence repeat (ISSR) amplification for analysis of microsatellite motif frequency and fingerprinting in rice (Oryza sativa L.). Theor Appl Genet 98:780–792CrossRefGoogle Scholar
  9. Bornet B, Goraguer F, Joly G, Branchard M (2002) Genetic diversity in European and Argentinian cultivated potatoes (Solanum tuberosum subsp. tuberosum) detected by inter simple sequence repeats (ISSRs). Genome 45:481–484PubMedCrossRefGoogle Scholar
  10. Bradbury EJ, Emswhiller E (2011) The role of organic acids in the domestication of Oxalis tuberosa: a new model for studying domestication resulting in opposing crop phenotypes. Econ Bot 65:76–84CrossRefGoogle Scholar
  11. Bulmer R (1965) Beliefs concerning the propagation of new varieties of sweet potato in two New Guinea Highlands societies. J Polyn Soc 74:237–239Google Scholar
  12. Carrión S, Hermann M, Trognitz B (1995) La biología reproductiva de la oca (Oxalis tuberosa Molina). Boletín de Lima 98:48–68Google Scholar
  13. Cordeiro GM, Pan YB, Henry RJ (2003) Sugarcane microsatellites for the assessment of genetic diversity in sugarcane germplasm. Plant Scie 165:181–189CrossRefGoogle Scholar
  14. De Azkue D, Martínez A (1990) Chromosome number of the Oxalis tuberosa alliance (Oxalidaceae). Plant Syst Evol 169:25–29CrossRefGoogle Scholar
  15. Doyle JJ, Doyle JL (1987) A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem Bull 19:11–15Google Scholar
  16. Earl DA, vonHoldt BM (2012) STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv Genet Resour 4:359–361CrossRefGoogle Scholar
  17. Elias M, Penet L, Vindry P, McKey D, Panaud O, Robert T (2001a) Unmanaged sexual reproduction and the dynamics of genetic diversity of a vegetatively propagated crop plant, cassava (Manihot esculenta Crantz), in a traditional farming system. Mol Ecol 10:1895–1907PubMedCrossRefGoogle Scholar
  18. Elias M, McKey D, Panaud O, Anstett MC, Robert T (2001b) Traditional management of cassava morphological and genetic diversity by the Makushi Amerindians (Guyana, South America): perspectives for on-farm conservation of crop genetic resources. Euphytica 120:143–157CrossRefGoogle Scholar
  19. Emshwiller E (2002) Ploidy levels among species in the ‘Oxalis tuberosa alliance’ as inferred by flow cytometry. Ann Bot 89:741–753PubMedCrossRefGoogle Scholar
  20. Emshwiller E (2006) Origins of polyploid crops. The example of the octoploid tuber crop Oxalis tuberosa. In: Zeder MA, Bradley DG, Emshwiller E, Smith BD (eds) Documenting, domestication new genetic and archaeological paradigms. University of California press, Berkeley, pp 153–168Google Scholar
  21. Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 14:2611–2620PubMedCrossRefGoogle Scholar
  22. Falush D, Stephens M, Pritchard JK (2003) Inference of population structure using multilocus genotype data: linked loci and correlated allele frequencies. Genet 164:1567–1587Google Scholar
  23. Gibbs PE (1976) Studies on the breeding system of Oxalis tuberosa Mol. Flora 165:129–138Google Scholar
  24. Guaraguara KJ (2013) Establecimiento de un kit de microsatelites en oca (Oxalis tuberosa Molina) para estudios de diversidad genética. M. Sc. Thesis. Universidad Mayor de San Simón, Cochabamba, Bolivia, 133 pGoogle Scholar
  25. Hennig C, Hausdorf B (2010) Prabclus: functions for clustering of presence-absence, abundance and multilocus genetic data. R package version 2.2-2. URL:
  26. Huamán Z (2001) Semilleros communales de papas nativas del Perú. Biodiversidad 30:20–22Google Scholar
  27. Hubisz M, Falush D, Stephens M, Pritchard J (2009) Inferring weak population structure with the assistance of sample group information. Mol Ecol Resour 9:1322–1332PubMedCentralPubMedCrossRefGoogle Scholar
  28. Husson F, Le S, Pages J (2010) Exploratory multivariate analysis by example using R. Chapman and Hall/CRC, London, p 240CrossRefGoogle Scholar
  29. Jaccard P (1908) Nouvelles recherches sur la distribution florale. Bull Soc Vaudoise de Sciences Naturelles 44:223–270Google Scholar
  30. Jarvis DI, Myer L, Klemick H, Guarino L, Smale M, Brown AHD, Sadiki M, Sthapit B, Hodgkin T (2000) A training guide for in situ conservation on farm. International Plant Genetic Resources Institute (IPGRI), Rome, Italy 161 pGoogle Scholar
  31. Johns T, Keen SL (1986) Ongoing evolution of the potato on the altiplano of Western Bolivia. Econ Bot 40:409–424CrossRefGoogle Scholar
  32. King SR, Gershoff SN (1987) Nutritional evaluation of three underexploited Andean tubers: Oxalis tuberosa Oxalidaceae, Ullucus tuberosus Basellaceae, and Tropaeolum tuberosum Tropaeolaceae. Econ Bot 41:503–511CrossRefGoogle Scholar
  33. Li C, Rossnagel B, Scoles G (2000) The development of oat microsatellite markers and their use in identifying relationships among Avena species and oat cultivars. Theor Appl Genet 101:1259–1268CrossRefGoogle Scholar
  34. Markwith SH, Stewart DJ, Dyer JL (2006) TETRASAT: a program for the population analysis of allotetraploid microsatellite data. Mol Ecol Notes 6:586–589CrossRefGoogle Scholar
  35. McCormick MK, Kettenring KM, Baron HM, Whigham DF (2010) Spread of invasive Phragmites australis in estuaries with differing degrees of development: genetic patterns, Allee effects and interpretation. J Ecol 98:1369–1378CrossRefGoogle Scholar
  36. McKey D, Elias M, Pujol B, Duputié A (2010) The evolutionary ecology of clonally propagated domesticated plants. New Phytol 186:318–332PubMedCrossRefGoogle Scholar
  37. Mohammadi SA, Prasanna BM (2003) Analysis of genetic diversity in crop plants. Salient statistical tools and considerations. Crop Sci 43:1235–1248CrossRefGoogle Scholar
  38. Peakall R, Smouse PE (2006) Genalex 6: genetic analysis in excel. Population genetic software for teaching and research. Mol Ecol Notes 6:288–295CrossRefGoogle Scholar
  39. Pissard A (2008) Structure and genetic diversity of two Andean tuber crops, oca (Oxalis tuberosa Mol.) and mashua (Tropaeolum tuberosum R.&P.): influence of the mode of conservation and of the agronomic and biological characteristics. Ph. D. dissertation. Université catholique de Louvain, Louvain La Neuve, Belgium, 248Google Scholar
  40. Pissard A, Ghislain M, Bertin P (2006) Genetic diversity of the Andean tuber-bearing species, oca (Oxalis tuberosa Mol.), investigated by inter- simple sequence repeats. Genome 49:8–16PubMedCrossRefGoogle Scholar
  41. Pissard A, Rojas-Beltran JA, Faux A-M, Paulet S, Bertin P (2007) Evidence of intra- varietal genetic variability in the vegetatively propagated crop oca (Oxalis tuberosa Mol.) in the Andean traditional farming system. Plant Syst Evol 270:59–74CrossRefGoogle Scholar
  42. Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genet 155:945–959Google Scholar
  43. Quiros CF, Ortega R, van Raamsdonk L, Herrera-Montoyo M, Cisneros P, Schmidt E, Brush SB (1992) Increase of potato genetic resources in their centre of diversity: the role of natural outcrossing and selection by the Andean farmer. Genet Res Crops Evol 39:107–113Google Scholar
  44. Ramirez M (2002) On farm conservation of minor tubers in Peru: the dynamics of oca (Oxalis tuberosa) landrace management in a peasant community. Plant Genet Res Newsl 132:1–9Google Scholar
  45. Sambatti JBM, Martins PS, Ando A (2001) Folk taxonomy and evolutionary dynamics of cassava: a case study in Ubatuba, Brazil. Econ Bot 55:93–105CrossRefGoogle Scholar
  46. Scarcelli N, Tostain S, Vigouroux Y, Agbangla C, Daïnou O, Pham JL (2006) Farmers’ use of wild relative and sexual reproduction in a vegetatively propagated crop. The case of yam in Benin. Mol Ecol 15:2421–2431PubMedCrossRefGoogle Scholar
  47. Schliep KP (2011) Phangorn: phylogenetic analysis in R. Bioinforma 27:559–592CrossRefGoogle Scholar
  48. Siju S, Dhanya K, Syamkumar S, Sheeja TE, Sasikumar B, Bhat AI, Parthasarathy VA (2010) Development, characterization and utilization of genomic microsatellite markers in turmeric (Curcuma longa L.). Biochem Syst Ecol 38:641–646CrossRefGoogle Scholar
  49. Tapia C, Estrella J (2001) Genetic erosion quantification in ullucus (Ullucus tuberosus Caldas), oca (Oxalis tuberosa Mol.) and mashua (Tropaeolum tuberosum R.&P.) in agrosystems of the provinces of Cañar, Chimborazo and Tungurahua, Ecuador. In: Proceedings of the international symposium “Managing biodiversity in agricultural ecosystems”, 8–10 Nov 2001, Montreal, CanadaGoogle Scholar
  50. Terrazas F, Valdivia G (1998) Spatial dynamics of in situ conservation: handling the genetic diversity of Andean tubers in mosaic systems. Plant Genet Resour Newsl 114:9–15Google Scholar
  51. Trognitz BR, Hermann M, Carrión S (1998) Germplasm conservation of oca (Oxalis tuberosa Mol.) through botanical seed. Seed formation under a system of polymorphic incompatibility. Euphytica 101:133–141CrossRefGoogle Scholar
  52. Turumaya AA (2011) Desarrollo de marcadores microsatélites para la caracterización de germoplasma en oca (Oxalis tuberosa Molina). M. Sc. Thesis. Universidad Mayor de San Simón, Cochabamba, Bolivia, p 71Google Scholar
  53. Yen DE (1960) The sweet potato in the Pacific: the propagation of the plant in relation to its distribution. J Polynesian Soc 69:368–375Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Maxime Bonnave
    • 1
  • Guillaume Bleeckx
    • 1
  • Jorge Rojas Beltrán
    • 2
  • Peter Maughan
    • 3
  • Marie-Christine Flamand
    • 4
  • Franz Terrazas
    • 5
  • Pierre Bertin
    • 1
  1. 1.Earth and Life InstituteUniversité Catholique de LouvainLouvain-la-NeuveBelgium
  2. 2.Faculdad de Ciencias Agricolas, Pecuarias, Forestales y VeterinariasUniversidad Mayor de San SimonCochabambaBolivia
  3. 3.Plant and Wildlife SciencesProvoUSA
  4. 4.Institut des Sciences de la VieUniversité Catholique de LouvainLouvain La NeuveBelgium
  5. 5.Fundación PROINPA (Promoción e Investigación de Productos Andinos)CochabambaBolivia

Personalised recommendations