Genetic Resources and Crop Evolution

, Volume 61, Issue 1, pp 69–87 | Cite as

Evaluation of European emmer wheat germplasm for agro-morphological, grain quality traits and molecular traits

  • Linda Mondini
  • Heinrich Grausgruber
  • Mario A. Pagnotta
Research Article

Abstract

A total of 38 emmer wheat accessions, collected in several European countries, have been evaluated using agro-morphological traits, grain quality characteristics and molecular markers. The agronomic traits evaluated were: vernalisation response, winter hardiness, date of heading and flowering, lodging, plant height at harvest and resistances against powdery mildew (Erysiphe graminis), leaf rust (Puccinia recondita) and yellow rust (Puccinia striiformis). Evaluation of quality traits has been performed measuring the protein content, gluten quality and quantity. In addition, a baking test has been executed. The assessment of genetic variability has been carried out at the molecular level utilizing 6 SSR, 6 EST-SSR markers for genes with known function, and 6 ISSR primers for a total of 107 loci analyzed. Mean 1,000 kernel weight ranged from 31.6 to 39.0 g for winter emmer accessions and from 22.9 to 42.6 for spring emmer accessions. The protein content for both winter and spring emmer was considerably affected by environment and genotype. Nearly, all the spring emmer accessions showed resistance to powdery mildew. Measurement of wet gluten content revealed high values, ranging from 37.0 to 56.6 %. The molecular analysis showed a great value of genetic distance between accessions; the expected heterozygosity and the variance between accessions indicate an equal distribution of the alleles (i.e. alleles frequency almost equal) and the presence of great variability in the analyzed material. Finally, no defined clusters were obtained considering winter versus spring accessions as well as the molecular markers did not discriminate the accessions respect their origin.

Keywords

Agro-morphological traits Emmer wheat Molecular markers Quality traits 

References

  1. AGES (2004) Österreichische beschreibende Sortenliste 2004. Landwirtschaftliche Pflanzenarten. Schriftenreihe 21/2004. Österreichische Agentur für Gesundheit und Ernährungssicherheit (AGES), Wien, AustriaGoogle Scholar
  2. Barcaccia G, Molinari L, Porfiri O, Veronesi F (2002) Molecular characterization of emmer (Triticum dicoccon Schrank) Italian landraces. Genet Resour Crop Evol 49:417–428Google Scholar
  3. Berliner E, Koopmann J (1929) Kolloidchemische Studien am Weizenkleber nebst Beschreibung einer neuen Kleberprüfung. Zeitschrift für das gesamte Mühlenwesen 6:57–63Google Scholar
  4. Blanco A, Giorgi B, Perrino P, Simeone R (1990) Risorse genetiche e miglioramento della qualità del frumento duro. Agric Ricerca 114:41–58Google Scholar
  5. Castagna R, Porfiri O, D’Antuono LF, Errani M, Mazzocchetti A, Codianni P (1995) Genotipi di farro a confronto. L’Informatore Agrario 51(38):55–59Google Scholar
  6. Castagna R, Minoia C, Porfiri O, Rocchetti G (1996) Nitrogen level and seeding rate effects on the performance of hulled wheats (Triticum monococcum L, T. dicoccum Schübler and T. spelta L.) evaluated in contrasting agronomic environments. J Agron Crop Sci 176:173–181Google Scholar
  7. Codianni P, Galterio G, Pogna NE, Di Fonzo N (2000) Mosè e Padre Pio due nuovi genotipi di farro (Triticum dicoccum Schübl.) caratteristiche qualitative di pregio. L’Informatore Agrario 24:37–38Google Scholar
  8. Cubadda R, Marconi E (1996) Technological and nutritional aspects in emmer and spelt. In: Padulosi S, Hammer K, Heller J (eds) Hulled wheats: proceedings of the first international workshop on hulled wheats, 21–22 July 1995, Castelvecchio Pascoli, Tuscany, Italy. International Plant Genetic Resources Institute, Rome, pp 203–211Google Scholar
  9. Cubadda R, Marconi E (2002) Spelt wheat. In: Belton PS, Taylor JRN (eds) Pseudocereals and less common cereals. Springer, Berlin, pp 153–175Google Scholar
  10. D’Andrea AC, Haile M (2002) Traditional emmer processing in highland Ethiopia. J Ethnobiol 22:179–217Google Scholar
  11. D’Antuono LF, Minelli M (1998) Yield and yield components analysis of emmer wheat (Triticum dicoccum Schübler) landraces from Italy. In: Jaradat AA (ed) Proceedings of the 3rd international Triticeae symposium, May 4–8, 1997, Aleppo, Syria. Science Publisher Inc., Enfield, pp 393–404Google Scholar
  12. D’Antuono LF, Minelli M, Porfiri O (1997) Spelt in Italy: history and preliminary adaptation trials. In: Ortiz R, Stølen O (eds) Spelt and quinoa, working group meeting, COST 814 Crop development for the cool and wet regions of Europe, 24–25 October, Wageningen, The Netherlands. European Commision KVL Royal Veterinary and Agricultural University, Frederiksberg, pp 17–31Google Scholar
  13. Dvorak J, Mc Guire PE, Cassidy B (1988) An apparent sources of the A genomes of wheats inferred from polymorphisms in abundance and restriction fragment length of repeated nucleotide sequences. Genome 30:680–689CrossRefGoogle Scholar
  14. Eujayl I, Sorrells ME, Baum M, Wolters P, Powell W (2002) Isolation of EST-derived microsatellite markers for genotyping the A and B genomes of wheat. Theor Appl Genet 104:399–407PubMedCrossRefGoogle Scholar
  15. Feldman M (2001) The origin of cultivated wheat. In: Bonjean AP, Angus WJ (eds) The world wheat books a history of wheat breeding. Lavoisier Publishing, Paris, pp 3–56Google Scholar
  16. Figliuolo G, Perrino P (2004) Genetic diversity and intra-specific phylogeny of Triticum turgidum L. subsp. dicoccon (Schrank) Thell. revealed by RFLPs and SSRs. Genet Resour Crop Evol 51:519–527Google Scholar
  17. Galterio G, Codianni P, Novembre G, Saponaro C, Di Fonzo N, Pogna NE (1998) Storage protein composition and technological characteristics of F6 lines from the cross Triticum turgidum spp. durum × Triticum turgidum spp. dicoccum. In: Proceedings of the 9th international wheat genetics symposium, vol 4. Saskatoon, Canada, pp 148–150Google Scholar
  18. Galterio G, Codianni P, Giusti AM, Pezzarossa B, Cannella C (2003) Assessment of the agronomic and technological characteristics of Triticum turgidum ssp. dicoccum Schrank and T. spelta L. Nahr 47:54–59Google Scholar
  19. Gericke S, Kurmies B (1952) Die kolorimetrische Phosphorsäurebestimmung mit Ammonium–Vandat–Molybdat und ihre Anwendung in der Pflanzenanalyse. Z PflanzenernährBodenkd 59:235–247Google Scholar
  20. Gilmour AR, Cullis BR, Verbyla AP (1997) Accounting for natural and extraneous variation in the analysis of field experiments. J Agric Environ Biol Stat 2:269–293CrossRefGoogle Scholar
  21. Grausgruber H, Arndorfer M (2003) Current situation of einkorn (Triticum monococcum subsp. monococcum) and emmer (Triticum turgidum subsp. dicoccum) cultivation in Austria. In: Marè C, Faccioli P, Stanca AM (eds) From biodiversity to genomics: breeding strategies for small grain cereals in the third millennium. Proceedings of the EUCARPIA Cereal Section Meeting, 21–25 Nov 2002, Salsomaggiore, Italy. Experimental Institute for Cereal Research, Fiorenzuola d’Arda, pp 45–47Google Scholar
  22. Grausgruber H, Tumpold R, Lassnig P, Ruckenbauer P (2002) Agronomische und qualitative Merkmale von Emmer (Triticum turgidum subsp. dicoccum). In: 49 Vortragstagung, Qualität und Pflanzenzüchtung, 4–5 März, Hannover, pp 41–50. Deutsche Gesellschaft für Qualitätsforschung (Pflanzliche Nahrungsmittel) e. V., Freising, GermanyGoogle Scholar
  23. Guarda G, Padovan S, Delogu G (2002) Grain yield, nitrogen-use efficiency and baking quality of old and modern Italian bread wheat cultivars grown at different nitrogen levels. Eur J Agron 21:181–192CrossRefGoogle Scholar
  24. Hentschel V, Kranl K, Hollmann J, Lindhauer MG, Bohmand V, Bitsch R (2002) Spectrophotometric determination of yellow pigment content and evaluation of carotenoids by high performance liquid chromatography in durum wheat grain. J Agric Food Chem 50:6663–6668PubMedCrossRefGoogle Scholar
  25. Hjelmqvist H (1966) Some notes on the old wheat species of Gotland. Hereditas 56:382–394CrossRefGoogle Scholar
  26. Hodgkin T, Roviglioni R, De Vicente MC, Dudnik N (2001) Molecular methods in the conservation and use of plant genetic resources. In: Dorè C, Dosba F, Baril C (eds) Proceedings of the international symposium on molecular markers, ISHS Acta Horticulturae, 546: 107–118Google Scholar
  27. Jantsch P, Trautz D (2001) Untersuchung zur Anbaueignung verschiedener Herkünfte von Einkorn (Triticum monococcum) und Emmer (Triticum dicoccum) im ökologischen Landbau. Mitteilungen der Gesellschaft für Pflanzenbauwissenschaften 13:174–175Google Scholar
  28. Jantsch P, Trautz D (2003) Einkorn (Triticum monococcum) und Emmer (Triticum dicoccum) im Ökologischen Landbau: Zweijährige Forschungsergebnisse zu Anbau und Qualität. In: Freyer B (ed) Beiträge zur Wissenschaftstagung zum Ökologischen Landbau, Ökologischer Landbau der Zukunft, 24–26 Februar, Wien. Universität für Bodenkultur, Wien, pp 41–44Google Scholar
  29. Konvalina P, Capouchová I, Stehno Z (2012) Agronomically important traits of emmer wheat discrimina. Plant Soil Environ 58(8):341–346Google Scholar
  30. Laghetti G, Piergiovanni AR, Volpe N, Perrino P (1999) Agronomic performance of Triticum dicoccon Schrank and T. spelta L. accessions under Southern Italian conditions. Agricoltura Mediterr 129:199–211Google Scholar
  31. Le Clerc JA, Bailey LH, Wessling HL (1918) Milling and baking tests of einkorn, emmer, spelt, and Polish wheat. J Am Soc Agron 10:215–217CrossRefGoogle Scholar
  32. Leenhardt F, Lyana B, Rocka E, Boussard A, Potus J, Chanliaud E, Remesya C (2006) Genetic variability of carotenoid concentration, and lipoxygenase and peroxidase activities among cultivated wheat species and bread wheat varieties. Eur J Agron 25:170–176CrossRefGoogle Scholar
  33. Lewis PO, Zaykin D (2001) Genetic data analysis: computer program for the analysis of allelic data. Version 10 (d16c). Free program distributed by the authors over the internet from http://lewis.eeb.uconn.edu/lewishome/software.html
  34. Loje H, Moller B, Lausten AM, Hansen A (2003) Chemical composition, functional properties and sensory profiling of einkorn (Triticum monococcum L.). J Cereal Sci 37:231–240CrossRefGoogle Scholar
  35. Marshall DR, Brown AHD (1975) Optimum sampling strategies in genetic conservation. In: Frankel OH, Hawkes JC (eds) Crop genetic resource for today and tomorrow. Cambridge University Press, Cambridge, pp 53–80Google Scholar
  36. Merezhko AF, Filatenko AA, Funtov KA (1997) The diversity of Triticum dicoccum Schuebl. for use in cool, wet regions of Europe. In: Stølen O, Bruhn K, Pithan K, Hill J (eds) Small grain cereals and pseudo-cereals, COST 814, workshop held at The Royal Veterinary and Agricultural University Copenhagen, Denmark, 22–24 February 1996. Office for Official Publications of the European Communities, Luxembourg, pp 38–51Google Scholar
  37. Mondini L, Grausgruber H, Porceddu E, Pagnotta MA (2008) Assessment of genetic diversity in European emmer wheat populations. In: Appels R, Eastwood R, Lagudah E, Langridge P, Mackay M, McIntyre L, Sharp P (eds) Proceedings of the 11th international wheat genetics symposium, vol 1. Sydney University Press, Sydney, pp 264–266Google Scholar
  38. Nei M (1972) Genetic distance between populations. Am Nat 106:183–192CrossRefGoogle Scholar
  39. Nesbitt M, Samuel D (1996) From staple crop to extinction? The archaeology and history of the hulled wheats. In: Padulosi S, Hammer K, Heller J (eds) Hulled wheats. Proceedings of the first international workshop on hulled wheats, Castelvecchio Pascoli, Tuscany, Italy, July 21–22, 1995. IPGRI, Rome, pp 41–100Google Scholar
  40. Oliveira JA (2001) North Spanish emmer and spelt wheat landraces: agronomical and grain quality characteristic evaluation. Plant Genet Resour Newsl 125:16–20Google Scholar
  41. Özbek Ö, Göçmen Taškin B, Keskin Šan S, Eser V, Arslan O (2013) Genetic characterization of Turkish cultivated emmer wheat [Triticum turgidum L. ssp. dicoccon (Schrank) Thell.] landraces based on isoenzyme analysis. Cereal Res Com. doi: 10.1556/CRC.2013.0001
  42. Ozkan H, Brandolini A, Schafer-Pregl R, Salamini F (2002) AFLP analysis of collection of tetraploid wheats indicates the origin of emmer and hard wheat domesticaton of southest Turkey. Mol Biol Evol 19(10):1797–1801PubMedCrossRefGoogle Scholar
  43. Pagnotta MA (2003) Evaluation of genetic diversity present in tetraploid wheat from Mediterranean basin. In: Marè C, Faccioli P, Stanca M (eds) Proceedings of EUCARPIA cereal section meeting, Salsomaggiore, Italy, 21–25 November. Marchi snc Press, pp 39–42Google Scholar
  44. Pagnotta MA (2004) Morphological and molecular characterization of hulled wheats. In: Vollmann J, Grausgruber H, Ruckenbauer P (eds) Genetic variation for plant breeding. Proceedings of the 17th EUCARPIA General Congress, 8–11 September 2004, Tulln, Austria. BOKU—University of Natural Resources and Applied Life Sciences, Vienna, pp 13–16Google Scholar
  45. Pagnotta MA, Mondini L, Atallah MF (2005) Morphological and molecular characterization of Italian emmer wheat accessions. Euphytica 146:29–37CrossRefGoogle Scholar
  46. Pagnotta MA, Mondini L, Codianni P, Fares C (2009) Agronomical, quality, and molecular characterization of twenty Italian emmer wheat (Triticum dicoccon) accessions. Genet Resour Crop Evol 56:299–310Google Scholar
  47. Peña-Chocarro L (1996) In situ conservation of hulled wheat species: the case of Spain. In: Padulosi S, Hammer K, Heller J (eds) Hulled wheats. Proceedings of the first international workshop on hulled wheats, 21–22 July 1995, Castelvecchio Pascoli, Italy. International Plant Genetic Resources Institute, Rome, pp 128–146Google Scholar
  48. Perrino P, Hammer K (1982) T. monococcum L. and T. dicoccum Schübler (Syn of T. dicoccum Schrank) are still cultivated in Italy. Genet Agric 36:343–352Google Scholar
  49. Perrino P, Laghetti G, D’Antuono LF, Al Ajlouni M, Kanbertay M, Szabó AT, Hammer K (1996) Ecogeographical distribution of hulled wheat species. In: Padulosi S, Hammer K, Heller J (eds) Hulled wheats. Proceedings of the first international workshop on hulled wheats, 21–22 July 1995, Castelvecchio Pascoli, Italy. International Plant Genetic Resources Institute, Rome, pp 128–146Google Scholar
  50. Piergiovanni AR, Rizzi R, Pannacciulle E, Della Gatta C (1997) Mineral composition in hulled wheat grains: a comparison between emmer (Triticum dicoccon Schrank) and spelt (T. spelta L.) accessions. Int J Food Sci Nutr 48:381–386CrossRefGoogle Scholar
  51. Porfiri O, Petrini A, Fuselli D, Minoia C, Borghi B, D’Antuono LF, Minelli M, Codoni D, Mazzocchetti A, Codianni P (1996) Farro: scelta varietale. L’Informatore Agrario 52(36):58–62Google Scholar
  52. Porfiri O, Petrini A, Fuselli D, Minoia C, Castagna R, D’Antuono LF, Minelli M, Codoni D, Mazzocchetti A, Codianni P, Belocchi A, Fornara M, Volpe N, Bottazzi P, Piazza C (1997) Farro: scelta varietale. L’Informatore Agrario 53(37):51–56Google Scholar
  53. Porfiri O, D’Antuono LF, Codianni P, Mazza L, Castagna R (1998) Evaluation of Italian hulled wheats collection for agronomic and quality characteristics. In: Jaradat AA (ed) Triticeae III. Science Publishers Inc., Enfield, pp 387–392Google Scholar
  54. Porfiri O, Petrini A, Fuselli D, Vaccino P, Empilli S, D’Antuono LF, Minelli M, Silveri D, Crisi C, De Michele L, Colonna M, Codianni P, Belocchi A, Fornara M, Volpe N, Perrino P, Archetti R, Monotti M, Piazza C, Miceli F (1999) Confronto tra genotipi di farro. L’Informatore Agrario 55(37):45–47Google Scholar
  55. Salunkhe A, Tamhankar S, Tetali S, Zaharieva M, Bonnett D, Trethowan R, Misra S (2013) Molecular genetic diversity analysis in emmer wheat (Triticum dicoccon Schrank) from India. Genet Resour Crop Evol 60(1):165–174CrossRefGoogle Scholar
  56. Schumacher M, Lindhauer G (2002) Einkorn emmer—renaissance of ancient wheats? ICC/IRTAC cereal conference, 9–11 October, Paris, FranceGoogle Scholar
  57. Sharma HC, Waines JG, Foster W (1981) Variability in primitive and wild wheats for useful genetic characters. Crop Sci 21:555–559CrossRefGoogle Scholar
  58. Strehlow W, HertzkaG, Weuffen W (1994) Aspetti nutrizionali. In: Perrino P, Semeraro D, Laghett G (eds) Le caratteristiche dietetiche del farro. Un cereale della salute, Potenza, Italy. CNR Bari, pp 52–66 Google Scholar
  59. Szabò AT, Hammer K (1996) Notes on the taxonomy of farro: Triticum monococcum, T. dicoccon and T. spelta. In: Padulosi S, Hammer K, Heller J (eds) Hulled wheats. Proceedings of the first international workshop on hulled wheats, 21–22 July 1995, Castelvecchio Pascoli, Italy. International Plant Genetic Resources Institute, Rome, pp 2–30Google Scholar
  60. Teklu Y, Hammer K, Röder MS (2007) Simple sequence repeats marker polymorphism in emmer wheat (Triticum dicoccon Schrank): analysis of genetic diversity and differentiation. Genet Resour Crop Evol 54(3):543–554CrossRefGoogle Scholar
  61. Tesfaye K, Ayana A (2007) Emmer wheat (Triticum dicoccum Schübler) in Ethiopia. Feature July 2007. Global Facilitation Unit for Underutilized Species. Maccarese, Rome, ItalyGoogle Scholar
  62. Troccoli A, Codianni P (2005) Appropriate seeding rate for einkorn, emmer, and spelt grown under rainfed condition in southern Italy. Eur J Agron 22:293–300CrossRefGoogle Scholar
  63. Vavilov NI (1951) The origin, variation, immunity and breeding of cultivated plants (translated from the Russian by Chester KS). Chronica Botanica 13 Chronica Botanica Co., Waltham, MA, USAGoogle Scholar
  64. Vazzana C (1996) The role of farmers’ associations in safeguarding endangered populations of farro in Italy In: Padulosi S, Hammer K, Heller J (eds) Hulled wheats, Proceedings of the first international workshop on hulled wheats, 21–22 July 1995, Castelvecchio Pascoli, Italy. International Plant Genetic Resources Institute, Rome, pp 147–152Google Scholar
  65. Wang X-R, Li W, Zheng Y-L (2007) Principal component and cluster analysis of agronomic characters in Triticum dicoccum Schrank. J Sichuan Agric Univ 25(3):239–248 Google Scholar
  66. Zaharieva M, Ayana NG, Al Hakimi A, Misra SC, Monneveux P (2010) Cultivated emmer wheat (Triticum dicoccon Schrank), an old crop with promising future: a review. Genet Resour Crop Evol 57(6):937–962CrossRefGoogle Scholar
  67. Zohary D, Hopf M (2000) Domestication of plants in the old world. The origin and spread of cultivated plants in West Asia, Europe and the Nile Valley, vol 3. Oxford University Press Inc., New YorkGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Linda Mondini
    • 1
  • Heinrich Grausgruber
    • 2
  • Mario A. Pagnotta
    • 1
  1. 1.Department of Science and Technologies for Agriculture, Forestry, Nature and Energy (DAFNE)Tuscia UniversityViterboItaly
  2. 2.Department of Crop SciencesBOKU-University of Natural Resources and Life SciencesTullnAustria

Personalised recommendations