Genetic Resources and Crop Evolution

, Volume 60, Issue 8, pp 2405–2420 | Cite as

Spatially structured genetic diversity of the Amerindian yam (Dioscorea trifida L.) assessed by SSR and ISSR markers in Southern Brazil

  • Wellington F. Nascimento
  • Jucelene F. Rodrigues
  • Samantha Koehler
  • Paul Gepts
  • Elizabeth A. VeaseyEmail author
Research Article


Dioscorea trifida L. (Dioscoreaceae) is among the economically most important cultivated Amerindian yam species, whose origin and domestication are still unresolved issues. In order to estimate the genetic diversity maintained by traditional farmers in Brazil, 53 accessions of D. trifida from 11 municipalities in the states of São Paulo, Santa Catarina, Mato Grosso and Amazonas were characterized on the basis of eight Simple Sequence Repeats (SSR) and 16 Inter Simple Sequence Repeats (ISSR) markers. The level of polymorphism among the accessions was high, 95 % for SSR and 75.8 % for ISSR. The SSR marker showed higher discrimination power among accessions compared to ISSR, with D parameter values of 0.79 and 0.44, respectively. Although SSR and ISSR markers led to dendrograms with different topologies, both separated the accessions into three main groups: I—Ubatuba-SP; II—Iguape-SP and Santa Catarina; and III—Mato Grosso. The accessions from Amazonas State were classified in group II with SSR and in a separate group with ISSR. Bayesian and principal coordinate analyzes conducted with both molecular markers corroborated the classification into three main groups. Higher variation was found within groups in the AMOVA analysis for both markers (66.5 and 60.6 % for ISSR and SSR, respectively), and higher Shannon diversity index was found for group II with SSR. Significant but low correlations were found between genetic and geographic distances (r = 0.08; p = 0.0007 for SSR and r = 0.16; p = 0.0002 for ISSR). Therefore, results from both markers showed a slight spatially structured genetic diversity in D. trifida accessions maintained by small traditional farmers in Brazil.


Dioscorea trifida Genetic diversity Genetic structure Molecular markers Traditional agriculture Yams 



The authors would like to thank the researchers Nivaldo Peroni, Antônio Henrique dos Santos, Lin Chau Ming, Edson Ferreira da Silva, Marcos V.B.M. Siqueira and Almecina Balbino Ferreira for their assistance in this research and the agriculturists for their contributions in the field collecting and interviews. The authors would also wish to thank FAPESP (process no. 2007/04805-2) and CNPq for the financial support given to this study.


  1. Arruda R (1999) “Populações tradicionais” e a proteção dos recursos naturais em unidades de conservação. Ambient Soc 5:79–252Google Scholar
  2. Ayensu ES, Coursey DG (1972) Guinea yams: the botany, ethnobotany, use and possible future of yams in West Africa. Econ Bot 26:301–318CrossRefGoogle Scholar
  3. Badfar-Chaleshtori S, Shiran B, Kohgard M, Mommeni H, Hafizi A, Khodambashi M, Mirakhorli N, Sorkheh K (2012) Assessment of genetic diversity and structure of Imperial Crown (Fritillaria imperialis L.) populations in the Zagros region of Iran using AFLP, ISSR and RAPD markers and implications for its conservation. Biochem Syst Ecol 42:35–48CrossRefGoogle Scholar
  4. Belaj A, Satovic Z, Cipriani G, Baldoni L, Testolin R, Rallo L, Trujillo I (2003) Comparative study of the discriminating capacity of RAPD, AFLP and SSR markers and their effectiveness in establishing genetic relationships in olive. Theor Appl Genet 107:736–744PubMedCrossRefGoogle Scholar
  5. Biswas MK, Xu Q, Deng X (2010) Utility of RAPD, ISSR, IRAP and REMAP markers for the genetic analysis of Citrus spp. Sci Hortic 124:254–261CrossRefGoogle Scholar
  6. Bousalem M, Amau G, Hochu I, Amolin R, Viader V, Santoni S, David J (2006) Microsatellite segregation analysis and cytogenetic evidence for tetrasomic inheritance in the American yam Dioscorea trifida and a new basic chromosome number in the Dioscoreae. Theor Appl Genet 113:439–451PubMedCrossRefGoogle Scholar
  7. Bousalem M, Viader V, Mariac C, Gomez R, Hochu I, Santoni S, David J (2010) Evidence of diploidy in the wild Amerindian yam, a putative progenitor of the endangered species Dioscorea trifida (Dioscoreaceae). Genome 53:371–383PubMedCrossRefGoogle Scholar
  8. Bressan EA, Veasey EA, Peroni N, Felipim AP, Santos KMP (2005) Collecting yam (Dioscorea spp.) and sweet potato (Ipomoea batatas) germplasm in traditional agriculture small-holdings in the Vale do Ribeira, São Paulo, Brazil. Plant Genet Resour Newsl 144:8–13Google Scholar
  9. Bressan EA, Briner Neto T, Zucchi MI, Rabello RJ, Veasey EA (2011) Morphological variation and isozyme diversity in Dioscorea alata L. landraces from Vale do Ribeira, Brazil. Sci Agric 68:494–502CrossRefGoogle Scholar
  10. Clement CR (1999) 1492 and the loss of Amazonian crop genetic resources. II. Crop biogeography at contact. Econ Bot 53:203–216CrossRefGoogle Scholar
  11. Clement CR, Cristo-Araújo M, D’Eeckenbrugge GC, Pereira AA, Picanço-Rodrigues D (2010) Origin and domestication of native Amazonian crops. Diversity 2:72–106CrossRefGoogle Scholar
  12. Coursey DG (1976) The origin and domestication of yams in Africa. In: Harlan JR, De Wet JMJ, Stemler ABL (eds) Origin of African plant domestication. Mouton Hague, Netherlands, pp 383–408Google Scholar
  13. Creste S, Tulmann NA, Figueira A (2001) Detection of single sequence repeat polymorphisms in denaturing polyacrylamide sequencing gels by silver staining. Plant Mol Biol Rep 19:299–306CrossRefGoogle Scholar
  14. Degras L (1993) The yam: a tropical root crop. Macmillan Press, LondonGoogle Scholar
  15. Dickau R, Ranere AJ, Cooke RG (2007) Starch grain evidence for the preceramic dispersals of maize and root crops into tropical dry and humid forests of Panama. Proc Natl Acad Sci 104:3651–3656PubMedCrossRefGoogle Scholar
  16. Doyle JJ, Doyle JL (1990) Isolation of plant DNA from fresh tissue. Focus 12:13–15Google Scholar
  17. Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 14:2611–2620PubMedCrossRefGoogle Scholar
  18. Falush D, Stephens M, Pritchard JK (2007) Inference of population structure using multilocus genotype data: dominant markers and null alleles. Mol Ecol Notes 7:574–578PubMedCrossRefGoogle Scholar
  19. Francisco-Ortega J, Santos-Guerra A, Kim SC, Crawford DJ (2000) Plant genetic diversity in the Canary Islands: a conservation perspective. Am J Bot 87:909–919PubMedCrossRefGoogle Scholar
  20. Gaudeul M, Taberlet P, Till-bottraud I (2000) Genetic diversity in an endangered alpine plant, Eryngium alpinum L. (Apiaceae), inferred from amplified fragment length polymorphism markers. Mol Ecol 9:1625–1637PubMedCrossRefGoogle Scholar
  21. Hamrick JL, Godt MJW (1989) Allozyme diversity in plant species. In: Brown AHD, Clegg MT, Kahler AL, Weir BS (eds) Plant population genetics, breeding and genetic resources. Sinauer Associates, Massachusetts, pp 43–46Google Scholar
  22. Hamrick JL, Godt MJW (1996) Conservation genetics of endemic plant species. In: Avise JC, Hamrick JL (eds) Conservation genetics: case histories from nature. Chapman and Hall, New York, pp 281–304CrossRefGoogle Scholar
  23. Hamrick JL, Godt MJ, Murawski DA, Loveless MD (1991) Correlations between species and allozyme diversity: implications for conservation biology. In: Falk DA, Holsinger KE (eds) Genetics and conservation of rare plants. Oxford University Press, New York, pp 75–86Google Scholar
  24. Hochu I, Santoni S, Bousalem M (2006) Isolation, characterization and cross-species amplification of microsatellite DNA loci in the tropical American yam Dioscorea trifida. Mol Ecol 6:137–140CrossRefGoogle Scholar
  25. Huang JC, Sun M (2000) Fluorescein PAGE analysis of microsatellite-primed PCR: a fast and efficient approach for genomic fingerprinting. Biotechniques 28:1069–1072Google Scholar
  26. Ladeira MI (1992) “O caminhar sob a luz”-o território Mbyá à beira do Oceano. Pontifícia Universidade Católica de São Paulo, DissertationGoogle Scholar
  27. Lebot V (2009) Tropical root and tuber crops: cassava, sweet potato, yams and aroids. CABI, LondonGoogle Scholar
  28. Mantel N (1967) The detection of disease clustering and a generalized regression approach. Cancer Res 27:202–209Google Scholar
  29. Mattioni C, Casasoli M, Gonzalez M (2002) Comparison of ISSR and RAPD markers to characterize three Chilean Nothofagus species. Theor Appl Gent 104:1064–1070CrossRefGoogle Scholar
  30. McGregor CE, Lambert CA, Greyling MM, Louw JH, Warnich L (2000) A comparative assessment of DNA fingerprinting techniques (RAPD, ISSR, AFLP and SSR) in tetraploid potato (Solanum tuberosum L.) germplasm. Euphytica 113:135–144CrossRefGoogle Scholar
  31. Mengesha WA, Demissew S, Fay MF, Smith RJ, Nordal I, Wilkin P (2013) Genetic diversity and population structure of Guinea yams and their wild relatives in South and South West Ethiopia as revealed by microsatellite markers. Genet Resour Crop Evol 60:529–541CrossRefGoogle Scholar
  32. Mignouna HD, Abang MM, Fagbemi SA (2003) A comparative assessment of molecular marker assays (AFLP, RAPD and SSR) for white yam (Dioscorea rotundata) germplasm characterization. Ann Appl Biol 142:269–276CrossRefGoogle Scholar
  33. Montaldo A (1991) Cultivo de raíces y tubérculos tropicales. Instituto Interamericano de Ciências Agrícolas de la OEA, LimaGoogle Scholar
  34. Odu BO, Asiedu R, JA Hughes, Shoyinka SA, Oladiran OA (2004) Identification of resistance to yam mosaic vírus (YMV), genus Potyvirus in white Guinea yam (Dioscorea rotundata Poir.). Field Crop Res 89:97–195CrossRefGoogle Scholar
  35. Oliveira EJ, Pádua JG, Zucchi MI, Vencovsky R, Vieira LC (2006) Origin, evolution and genome distribution of microsatellites. Genet Mol Biol 29:294–307CrossRefGoogle Scholar
  36. Olsen KM (2004) SNPs, SSRs and inferences on cassava’s origin. Plant Mol Biol 56:517–526PubMedCrossRefGoogle Scholar
  37. Pedralli G (1998) Revisão taxonômica das espécies de Dioscoreaceae (R.Br.) Lindley da Cadeia do Espinhaço, Minas Gerais e Bahia, Brasil. Dissertation, University of São PauloGoogle Scholar
  38. Perrier X, Jacquemoud-Collet JP (2006) DARwin software. Accessed 20 Nov 2011
  39. Piperno DR, Ranere AJ, Holst I, Hansell P (2000) Starch grains reveal early root crop horticulture in the Panamanian tropical forest. Nature 407:894–897PubMedCrossRefGoogle Scholar
  40. Prevost A, Wilkinson MJ (1999) A new system of comparing PCR primers applied to ISSR fingerprinting of potato cultivars. Theor Appl Genet 98:107–112CrossRefGoogle Scholar
  41. Pritchard JK, Donnelly P (2001) Case-control studies of association in structured or admixed populations. Theor Popul Biol 60:227–237PubMedCrossRefGoogle Scholar
  42. Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959PubMedGoogle Scholar
  43. Ramos-Escudero F, Santos-Buelga C, Pérez-Alonso JJ, Yáñes JA, Dueñas M (2010) HPLC-DAD-ESI/MS identification of anthocyanins in Dioscorea trifida L, yam tuber (purple sachapapa). Eur Food Res Technol 230:745–752CrossRefGoogle Scholar
  44. Reddy MP, Sarla N, Reddy EA (2002) Inter simple sequence repeat (ISSR) polymorphism and application plant breeding. Euphytica 128:9–17CrossRefGoogle Scholar
  45. Rogstad SH (1992) Saturated NaCl-CTAB solution as a means of field preservation of leaves for DNA analyses. Taxon 41:701–708CrossRefGoogle Scholar
  46. Rohlf FJ (1992) NTSYS-pc: numerical taxonomy and multivariate analysis system, version 1.70 (software). Stony Brook, New YorkGoogle Scholar
  47. Schmitz PI, Gazzaneo M (1991) O que comia o Guarani pré-colonial. Rev Arqueol 6:89–105Google Scholar
  48. Schneider S, Roessli D, Excoffier L (2000) Arlequin: software for population data analysis (Software). Genetic and Biometry laboratory of University of Geneva, GenevaGoogle Scholar
  49. Siqueira MVBM (2011) Yam: a neglected and underutilized crop in Brazil. Hort Brasil 29:6–20Google Scholar
  50. Siqueira MVBM, Queiroz-Silva JR, Bressan EA, Borges A, Pereira KJC, Pinto JG, Veasey EA (2009) Genetic characterization of cassava (Manihot esculenta) landraces in Brazil assessed with simple sequence repeats. Genet Mol Biol 32:104–110PubMedCrossRefGoogle Scholar
  51. Siqueira MVBM, Dequigiovanni G, Corazon-Guivin M, Feltran J, Veasey EA (2012) DNA fingerprinting of water yam (Dioscorea alata) cultivars in Brazil based on microsatellite markers. Hort Brasil 30:653–659Google Scholar
  52. Stephens JM (2009) Cushcush – Dioscorea trifida L. Accessed 27 Dec 2009
  53. Tessier C, David J, This P, Boursiquot J, Charrier A (1999) Optimizations of the choice of molecular markers for varietal identification in Vitis vinifera L. Theor Appl Genet 98:171–177CrossRefGoogle Scholar
  54. Tostain S, Scarcelli N, Brottier P, Marchand JL, Pham JL, Noyer JL (2006) Development of DNA microsatellite markers in tropical yam (Dioscorea sp.). Mol Ecol 6:173–175CrossRefGoogle Scholar
  55. Veasey EA, Borges A, Rosa MS, Queiroz-Silva JR, Bressan EA, Peroni N (2008) Genetic diversity in Brazilian sweetpotato (Ipomoea batatas (L.) Lam.) landraces assessed with microsatellites. Genet Mol Biol 31:725–733CrossRefGoogle Scholar
  56. Veasey EA, Monteiro MVB, Gomes LR, Nascimento WF, Ferreira AB, Silva MS, Silva EF, Ming LC, Peroni N, Santos AH (2010) Ocorrência e diversidade de espécies cultivadas do gênero Dioscorea em diversos agroecossistemas brasileiros. In: Ming LC, Amorozo MCM, Kffuri CW (eds) Agrobiodiversidade no Brasil: experiências e caminhos da pesquisa, 1st edn. NUPEEA, Recife, pp 45–74Google Scholar
  57. Veasey EA, Bressan EA, Siqueira MVBM, Borges A, Queiroz-Silva JR, Pereira KJC, Recchia GH, Ming LC (2012) Genetic characterization of cassava (Manihot esculenta Crantz) and yam (Dioscorea trifida L.) landraces in swidden agriculture systems in Brazil. In: Gepts P, Famula TR, Bettinger RL, Brush SB, Damania AB, McGuire PE, Qualset CO (eds) Biodiversity in agriculture: domestication, evolution, and sustainability. Cambridge Univ. Press, New York, pp 344–360Google Scholar
  58. Velez GA (1998) The chagra: collective patrimony of the indigenous Amazonian communities. Beyond Law 6:121–142Google Scholar
  59. Vogel JM, Rafalski A, Powell W, Morgante M, Andre C, Hanafey M, Tingey SV (1996) Application of genetic diagnostics to plant genome analysis and plant breeding. HortScience 31:1107–1108Google Scholar
  60. Wolfe AD (2000) ISSR protocols. Accessed 18 May 2009
  61. Wolfe AD (2005) ISSR techniques for evolutionary biology. Methods Enzymol 395:134–144PubMedCrossRefGoogle Scholar
  62. Wu Z, Leng C, Tao Z, Wei Y, Jiang C (2009) Genetic diversity of Dioscorea alata on ISSR analysis. Zhongguo Zhong Yao Za Zhi 34:3017–3020PubMedGoogle Scholar
  63. Yeh FC, Yang RC, Boyle TBJ, Ye ZH, Mao JX (1997) POPGENE, the user-friendly shareware for population genetic analysis. Mol Biol Biotechnol Centre, Canadian, EdmontonGoogle Scholar
  64. Zhou Y, Zhou C, Yao H, Liu Y, Tu R (2008) Amplification of ISSR markers in detection of genetic variation among Chinese yam (Dioscorea opposita Thunb.) cultivars. Life Sci J 5:6–12Google Scholar
  65. Zietkiewicz E, Rafalski A, Labuda D (1994) Genome fingerprinting by simple sequence repeat (SSR)-anchored polymerase chain reaction amplification. Genomics 20:176–183PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Wellington F. Nascimento
    • 1
  • Jucelene F. Rodrigues
    • 1
  • Samantha Koehler
    • 2
  • Paul Gepts
    • 3
  • Elizabeth A. Veasey
    • 1
    Email author
  1. 1.Department of Genetics, Luiz de Queiroz College of AgricultureUniversity of São PauloPiracicabaBrazil
  2. 2.Department of Biological SciencesFederal University of São PauloDiademaBrazil
  3. 3.Department of Plant Sciences/MS1, Section of Crop and Ecosystem SciencesUniversity of CaliforniaDavisUSA

Personalised recommendations