Genetic Resources and Crop Evolution

, Volume 60, Issue 4, pp 1531–1546 | Cite as

Genetic relationships and evolution in Cucurbita as viewed with simple sequence repeat polymorphisms: the centrality of C. okeechobeensis

  • Li Gong
  • Harry S. Paris
  • Gertraud Stift
  • Martin Pachner
  • Johann Vollmann
  • Tamas Lelley
Research Article

Abstract

Genetic relationships among 88 accessions from nine of the dozen species of Cucurbita (Cucurbitaceae) were assessed from polymorphisms at 74 SSR (simple sequence repeat) loci originating from C. pepo and C. moschata, yielding a total of 315 alleles distributed among 17 linkage groups, with an average of 4.3 alleles per locus. Genetic distance (GD) values were calculated, a principal coordinate analysis conducted, and a dendrogram constructed. Average within-species genetic distance values ranged from 0.07 for C. ecuadorensis and C. ficifolia to 0.46 for C. pepo. Each species was clearly defined, as all mean within-species GD values were lower than the respective mean between-species GD values. C. okeechobeensis had the most central position in the genus Cucurbita, with the lowest average GD to the other species, 0.61. C. foetidissima, the only xerophytic species examined, was the most distant, with a mean GD of 0.73 to the other species. C. pepo and C. ficifolia were the most outlying of the mesophytic species. Mean across-species GDs generally corresponded with crossability. However, there were some outstandingly low GD values between particular accessions of Cucurbita pepo, the economically most important species, and disease-resistant wild species, particularly C. okeechobeensis but also C. foetidissima. The results suggest that more intensive search and collection of C. okeechobeensis populations would likely yield genotypes that are more compatible with C. pepo. Moreover, successful application of genetic resources in the genus Cucurbita might be facilitated by using GD values obtained from SSR polymorphisms as a guide in choosing parents for interspecific crossing.

Keywords

Cucurbita Genetic resources Genome analysis Gourd Pumpkin Squash 

Supplementary material

10722_2012_9940_MOESM1_ESM.pdf (377 kb)
Supplementary material 1 (PDF 376 kb)

References

  1. Andres TC (1990) Biosystematics, theories on the origin, and breeding potential of Cucurbita ficifolia. In: Bates DM, Robinson RW, Jeffrey C (eds) Biology and utilization of the Cucurbitaceae. Cornell University Press, Ithaca, pp 102–119Google Scholar
  2. Andres TC (2004a) Diversity in tropical pumpkin (Cucurbita moschata): a review of infraspecific classifications. In: Lebeda A, Paris HS (eds) Progress in cucurbit genetics and breeding research, Proceedings of Cucurbitaceae 2004, the 8th EUCARPIA meeting on cucurbit genetics and breeding. Palacký University in Olomouc, Czech Republic, pp 107–112Google Scholar
  3. Andres TC (2004b) Diversity in tropical pumpkin (Cucurbita moschata): cultivar origin and history. In: Lebeda A, Paris HS (eds) Progress in cucurbit genetics and breeding research, Proceedings of Cucurbitaceae 2004, the 8th EUCARPIA meeting on cucurbit genetics and breeding. Palacký University in Olomouc, Czech Republic, pp 113–118Google Scholar
  4. Andres TC, Nabhan GP (1988) Taxonomic rank and rarity of Cucurbita okeechobeensis. Cucurbit Genet Coop Rep 11:83–85Google Scholar
  5. Baranek M, Stift G, Vollmann J, Lelley T (2000) Genetic diversity within and between the species Cucurbita pepo, C. moschata and C. maxima as revealed by RAPD markers. Cucurbit Genet Coop Rep 23:73–77Google Scholar
  6. Bemis WP, Rhodes AM, Whitaker TW, Carmer SC (1970) Numerical taxonomy applied to Cucurbita relationships. Am J Bot 57:404–412CrossRefGoogle Scholar
  7. Contin M, Munger HM (1977) Inheritance of powdery mildew resistance in interspecific crosses with Cucurbita martinezii. HortScience 12:397 (abstract)Google Scholar
  8. Decker-Walters DS, Walters TW, Posluszny U, Kevan PG (1990) Genealogy and gene flow among annual domesticated species of Cucurbita. Can J Bot 68:782–789CrossRefGoogle Scholar
  9. DeVaulx RD, Pitrat M (1979) Interspecific cross between Cucurbita pepo and C. martinezii. Cucurbit Genet Coop Rep 2:35Google Scholar
  10. DeVeaux JS, Shultz EB Jr (1985) Development of buffalo gourd (Cucurbita foetidissima) as a semiaridland starch and oil crop. Econ Bot 39:454–472CrossRefGoogle Scholar
  11. Duchesne AN (1786) Essai sur l’histoire naturelle des courges. Panckoucke, ParisGoogle Scholar
  12. Edelstein M, Burger Y, Horev C, Porat A, Meir A, Cohen R (2004) Assessing the effect of genetic and anatomic variation of Cucurbita rootstocks on vigour, survival and yield of grafted melons. J Hort Sci Biotech 79:370–374Google Scholar
  13. Ferriol M, Pico B, Nuez F (2001) Genetic variability in pumpkin (Cucurbita maxima) using RAPD markers. Cucurbit Genet Coop Rep 24:94–96Google Scholar
  14. Ferriol M, Pico B, Nuez F (2003a) Genetic diversity of some accessions of Cucurbita maxima from Spain using RAPD and SRAP markers. Genet Resourc Crop Evol 50:227–238CrossRefGoogle Scholar
  15. Ferriol M, Pico B, Nuez F (2003b) Genetic diversity of a germplasm collection of Cucurbita pepo using SRAP and AFLP markers. Theor Appl Genet 107:271–282PubMedCrossRefGoogle Scholar
  16. Ferriol M, Pico B, Nuez F (2004a) Morphological and molecular diversity of a collection of Cucurbita maxima landraces. J Am Soc Hort Sci 129:60–69Google Scholar
  17. Ferriol M, Pico B, Fernandez de Cordova P, Nuez F (2004b) Molecular diversity of a germplasm collection of squash (Cucurbita moschata) determined by SRAP and AFLP markers. Crop Sci 44:653–664Google Scholar
  18. Goldman A (2004) The compleat squash. Artisan, New YorkGoogle Scholar
  19. Gong L, Stift G, Kofler R, Pachner M, Lelley T (2008a) Microsatellites for the genus Cucurbita and an SSR-based genetic linkage map of Cucurbita pepo L. Theor Appl Genet 117:37–48PubMedCrossRefGoogle Scholar
  20. Gong L, Pachner M, Kalai K, Lelley T (2008b) SSR-based genetic linkage map of Cucurbita moschata and its synteny with Cucurbita pepo. Genome 51:878–887PubMedCrossRefGoogle Scholar
  21. Gong L, Paris HS, Nee MH, Stift G, Pachner M, Vollmann J, Lelley T (2012) Genetic relationships and evolution in Cucurbita pepo (pumpkin, squash, gourd) as revealed by simple sequence repeat polymorphisms. Theor Appl Genet 124:875–891PubMedCrossRefGoogle Scholar
  22. Gottlieb LD (1982) Conservation and duplication of isozymes in plants. Science 216:373–380PubMedCrossRefGoogle Scholar
  23. Groff DW (1966) A cytogenetic study of microsporogenesis in selected Cucurbita species. Ph.D. dissertation, University of Arizona, TucsonGoogle Scholar
  24. Gwanama C, Labuschagne MT, Botha AM (2000) Analysis of genetic variation in Cucurbita moschata by random amplified polymorphic DNA (RAPD) markers. Euphytica 113:19–24CrossRefGoogle Scholar
  25. Hampl V, Pavlícek A, Flegr J (2001) Construction and bootstrap analysis of DNA fingerprinting-based phylogenetic trees with a freeware program FreeTree: application to trichomonad parasites. Int J Syst Evol Microbiol 51:731–735PubMedCrossRefGoogle Scholar
  26. Havey MJ, McCreight JD, Rhodes B, Taurick G (1998) Differential transmission of the Cucumis organellar genomes. Theor Appl Genet 97:122–128CrossRefGoogle Scholar
  27. Hayase H (1954) Cucurbita crosses. V. Occurrence of a haploid twin pair from a F1 progeny of C. maxima × C. moschata. Jap J Breed 4:115–121Google Scholar
  28. Hernandez JE, Leon J (1994) Neglected crops, 1492 from a different perspective. FAO Plant Production and Protection Series, no. 26, Rome. http://www.fao.org/docrep/T0646E/T0646E00.htm
  29. Hurd PD Jr, Linsley EG, Whitaker TW (1971) Squash and gourd bees (Peponapsis, Xenoglossa) and the origin of the cultivated Cucurbita. Evolution 25:218–234CrossRefGoogle Scholar
  30. Jahn M, Munger HM, McCreight JD (2002) Breeding cucurbit crops for powdery mildew resistance. In: Bélanger RR, Bushnell WR, Dik AJ, Carver TLW (eds) The powdery mildews: a comprehensive treatise. APS Press, St. Paul, pp 239–248Google Scholar
  31. Katzir N, Mozes-Daube N, Danin-Poleg Y, Paris HS (2000) Potential usefulness of SSR markers for studying infraspecific variability in Cucurbita pepo. Cucurbit Genet Coop Rep 23:71–72Google Scholar
  32. Kirkpatrick KJ, Decker DS, Wilson HD (1985) Allozyme differentiation in the Cucurbita pepo complex: C. pepo var. medullosa vs C. texana. Econ Bot 38:289–299CrossRefGoogle Scholar
  33. Lebeda A, Widrlechner MP, Staub J, Ezura H, Zalapa J, Křistkova E (2007) Cucurbits (Cucurbitaceae; Cucumis spp., Cucurbita spp., Citrullus spp.). In: Singh RJ (ed) Genetic resources, chromosome engineering, and crop improvement: vegetable crops. CRC Press, Boca Raton, pp 271–376Google Scholar
  34. Lein A (1943) Die genetische Grundlage der Kreuzbarkeit zwischen Weizen und Roggen. Z Indukt Abstamm Vererbungslehre 81:28–61Google Scholar
  35. Lira R, Montes S (1994) Cucurbits (Cucurbita spp.). In: Hernandez JE, Leon J (eds) Neglected crops: 1492 from a different perspective. Rome, FAO, pp 63–77Google Scholar
  36. Merrick LC (1995) Squashes, pumpkins and gourds, Cucurbita (Cucurbitaceae). In: Smartt J, Simmonds NW (eds) Evolution of crop plants, 2nd edn. Longman Scientific & Technical, London, pp 97–105Google Scholar
  37. Merrick L, Bates DM (1989) Classification and nomenclature of Cucurbita argyrosperma. Baileya 23:94–102Google Scholar
  38. Montes-Hernandez S, Eguiarte LE (2002) Genetic structure and indirect estimates of gene flow in three taxa of Cucurbita (Cucurbitaceae) in western Mexico. Am J Bot 89:1156–1163PubMedCrossRefGoogle Scholar
  39. Munger HM (1976) Cucurbita martinezii as a source of disease resistance. Veg Imprt Newsl 18:4Google Scholar
  40. Naudin C (1856) Nouvelles recherches sur les caractères spécifiques et les variétés des plantes du genre Cucurbita. Ann Sci Nat Bot IV 6:5–73, 3 plGoogle Scholar
  41. Nee M (1990) The domestication of Cucurbita. Econ Bot 44(3 suppl.):56–68CrossRefGoogle Scholar
  42. Nei M, Li WH (1979) Mathematical model for studying genetic variation in terms of restriction endonucleases. Proc Natl Acad Sci USA 76:5269–5273PubMedCrossRefGoogle Scholar
  43. Ortiz-Alamillo O, Garza-Ortega S, Sanchez-Estrada A, Troncoso-Rojas R (2007) Yield and quality of the interspecific cross Cucurbita argyrosperma × C. moschata. Cucurbit Genet Coop Rep 30:56–59Google Scholar
  44. Paris HS (2000) First two publications by Duchesne of Cucurbita moschata (Cucurbitaceae). Taxon 49:305–319CrossRefGoogle Scholar
  45. Paris HS (2001) Characterization of the Cucurbita pepo collection at the Newe Ya‘ar Research Center, Israel. Plant Genet Resourc Newslett 126: Cover, 41–45Google Scholar
  46. Paris HS (2007) The drawings of Antoine Nicolas Duchesne for his natural history of the gourds. C. Érard (ed). Muséum National d’Histoire Naturelle, ParisGoogle Scholar
  47. Paris HS, Cohen R (2002) Powdery mildew-resistant summer squash hybrids having higher yields than their susceptible, commercial counterparts. Euphytica 124:121–128CrossRefGoogle Scholar
  48. Paris HS, Yonash N, Portnoy V, Mozes-Daube N, Tzuri G, Katzir N (2003) Assessment of genetic relationships in Cucurbita pepo (Cucurbitaceae) using AFLP, ISSR, and SSR markers. Theor Appl Genet 106:971–978PubMedGoogle Scholar
  49. Pico B, Sifres A, Esteras C, Nuez F (2005–2006) Cucumis SSR markers applied to the study of genetic diversity in the Cucurbita genus. Cucurbit Genet Coop Rep 28–29:70–72Google Scholar
  50. Puchalski JT, Robinson RW (1990) Electrophoretic analysis of isozymes in Cucurbita and Cucumis and its application for phylogenetic studies. In: Bates DM, Robinson RW, Jeffrey C (eds) Biology and utilization of the Cucurbitaceae. Comstock Publishing Associates, Ithaca, pp 60–76Google Scholar
  51. Robinson RW, Decker-Walters DS (1997) Cucurbits. CAB International, WallingfordGoogle Scholar
  52. Robinson RW, Puchalski JT (1980) Synonymy of Cucurbita martinezii and Cucurbita okeechobeensis. Cucurbit Genet Coop Rep 3:45–46Google Scholar
  53. Sanjur OI, Piperno DR, Andres TC, Wessel-Beaver L (2002) Phylogenetic relationships among domesticated and wild species of Cucurbita (Cucurbitaceae) inferred from a mitochondrial gene: implications for crop plant evolution and areas of origin. Proc Natl Acad Sci USA 99:535–540PubMedCrossRefGoogle Scholar
  54. Schaefer H, Renner SS (2011) Cucurbitaceae. In: Kubitzki K (ed) The families and genera of vascular plants, vol 10, Eudicots. Springer, New York, pp 112–174Google Scholar
  55. Schaefer H, Heibl C, Renner SS (2009) Gourds afloat: a dated phylogeny reveals an Asian origin of the gourd family (Cucurbitaceae) and numerous oversea dispersal events. Proc R Soc B 276:843–851PubMedCrossRefGoogle Scholar
  56. Singh AK (1979) Cucurbitaceae and polyploidy. Cytologia 44:897–905CrossRefGoogle Scholar
  57. Singh AK (1990) Cytogenetics and evolution in the Cucurbitaceae. In: Bates DM, Robinson RW, Jeffrey C (eds) Biology and utilization of the Cucurbitaceae. Comstock Publishing Associates, Ithaca, pp 10–28Google Scholar
  58. Stift G, Zraidi A, Lelley T (2004) Development and characterisation of microsatellite markers (SSR) in Cucurbita species. Cucurbit Genet Coop Rep 27:61–65Google Scholar
  59. Teppner H (2000) Cucurbita pepo (Cucurbitaceae)—history, seed coat types, thin coated seeds and their genetics. Phyton (Horn) 40:1–42Google Scholar
  60. Teppner H (2004) Notes on Lagenaria and Cucurbita (Cucurbitaceae)—review and new contributions. Phyton (Horn) 44:245–308Google Scholar
  61. Torres Ruiz RA, Hemleben V (1991) Use of ribosomal DNA spacer probes to distinguish cultivars of Cucurbita pepo L. and other Cucurbitaceae. Euphytica 53:11–17CrossRefGoogle Scholar
  62. US Fish and Wildlife Service (2009) Okeechobee gourd (Cucurbita okeechobeensis ssp. okeechobeensis) 5-Year review: summary and evaluation. US Fish and Wildlife Service, Vero Beach, FloridaGoogle Scholar
  63. Walters TW, Decker-Walters DS (1993) Systematics of the endangered Okeechobee gourd (Cucurbita okeechobeensis: Cucurbitaceae). Syst Bot 18:175–187CrossRefGoogle Scholar
  64. Weeden NF (1984) Isozyme studies indicate that the genus Cucurbita is an ancient tetraploid. Cucurbit Genet Coop Rep 7:84–85Google Scholar
  65. Weeden NF, Robinson RW (1986) Allozyme segregation ratios in the interspecific cross Cucurbita maxima × C. ecuadorensis suggest that hybrid breakdown is not caused by minor alterations in chromosome structure. Genetics 114:593–609PubMedGoogle Scholar
  66. Weiling F (1959) Genomanalytische Untersuchungen bei Kürbis (Cucurbita L.). Der Züchter 29:161–179Google Scholar
  67. Wessel-Beaver L (2000a) Evidence for the center of diversity of Cucurbita moschata in Colombia. Cucurbit Genet Coop Rep 23:54–55Google Scholar
  68. Wessel-Beaver L (2000b) Cucurbita argyrosperma sets fruit in fields where C. moschata is the only pollen source. Cucurbit Genet Coop Rep 23:62–63Google Scholar
  69. Wessel-Beaver L, Cuevas EH, Andres TC, Piperno DR (2004) Genetic compatibility between Cucurbita moschata and C. argyrosperma. In: Lebeda A, Paris HS (eds) Progress in cucurbit genetics and breeding research, Proceedings of Cucurbitaceae 2004, the 8th EUCARPIA meeting on cucurbit genetics and breeding. Palacký University in Olomouc, Czech Republic, pp 393–400Google Scholar
  70. Whitaker TW (1951) A species cross in Cucurbita. J Hered 42:65–69PubMedGoogle Scholar
  71. Whitaker TW (1954) A cross between an annual species and a perennial species of Cucurbita. Madroño 12:213–217Google Scholar
  72. Whitaker TW (1956) The origin of the cultivated Cucurbita. Am Naturalist 90:171–176CrossRefGoogle Scholar
  73. Whitaker TW, Bemis WP (1964) Evolution in the genus Cucurbita. Evolution 18:553–559CrossRefGoogle Scholar
  74. Whitaker TW, Bemis WP (1975) Origin and evolution of the cultivated Cucurbita. Bull Torrey Bot Club 102:362–368CrossRefGoogle Scholar
  75. Whitaker TW, Cutler HC (1965) Cucurbits and cultures in the Americas. Econ Bot 19:344–349CrossRefGoogle Scholar
  76. Whitaker TW, Davis GN (1962) Cucurbits. Interscience, New YorkGoogle Scholar
  77. Wilson HD (1989) Discordant patterns of allozyme and morphological variation in Mexican Cucurbita. Syst Bot 14:612–623CrossRefGoogle Scholar
  78. Wilson HD, Doebley J, Duvall M (1992) Chloroplast diversity among wild and cultivated members of Cucurbita (Cucurbitaceae). Theor Appl Genet 84:859–865CrossRefGoogle Scholar
  79. Wilson HD, Lira R, Rodriguez I (1994) Crop/weed gene flow: Cucurbita argyrosperma Huber and C. fraterna L. H. Bailey (Cucurbitaceae). Econ Bot 48:293–300CrossRefGoogle Scholar
  80. Wu J, Chang Z, Wu Q, Zhan H, Xie S (2011) Molecular diversity of Chinese Cucurbita moschata germplasm collections detected by AFLP markers. Sci Hort 128:7–13CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2012

Authors and Affiliations

  • Li Gong
    • 1
    • 2
    • 3
  • Harry S. Paris
    • 4
  • Gertraud Stift
    • 1
    • 2
  • Martin Pachner
    • 1
    • 2
  • Johann Vollmann
    • 5
  • Tamas Lelley
    • 1
    • 2
  1. 1.Department for AgrobiotechnologyUniversity of Natural Resources and Life Sciences, ViennaViennaAustria
  2. 2.Institute for Biotechnology in Plant ProductionIFA-TullnTullnAustria
  3. 3.Department of Plant PathologyNorth Dakota State UniversityFargoUSA
  4. 4.Department of Vegetable Crops and Plant Genetics, Agricultural Research OrganizationNewe Ya‘ar Research CenterRamat YishayIsrael
  5. 5.Plant Breeding Division, Department of Crop SciencesUniversity of Natural Resources and Life Sciences ViennaTullnAustria

Personalised recommendations