Genetic Resources and Crop Evolution

, Volume 60, Issue 1, pp 377–383 | Cite as

“Bracatinga” (Mimosa scabrella Bentham), a multipurpose tree growing in Southern Brazil: chromosome number and genetic variation

  • Nair Dahmer
  • Maria Teresa Schifino-WittmannEmail author
  • Divanilde Guerra
  • Roberto Luis Weiler
Notes on Neglected and Underutilized Crops


Mimosa scabrella Bentham, popularly known as “bracatinga” in Brazil, is a very important multipurpose tree especially in the southern region of the country, where it occurs naturally in plant associations called “bracatingais”. The species is presently in danger of losing genetic variability as it normally occurs in regions subjected to intense urbanization, industrialization, agriculture and cattle raising. Aiming at broadening the knowledge about the species we have investigated cytogenetic characteristics and genetic diversity among natural populations. The results show that all populations are tetraploid (2n = 4× = 52) and that there is a high genetic diversity among the populations. There is still time to avoid genetic erosion of M. scabrella if the areas where the species occurs are protected.


Genetic diversity Leguminosae Mimosa scabrella Mimosoideae Multipurpose trees 



To Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Brazil, for financial support. To Dr. Miguel Dall′Agnol, Departamento de Plantas Forrageiras e Agrometeorologia, for allowing the utilization of his laboratory facilities.


  1. AgroForestryTree Database (2012) World Agroforestry Centre. Available at Accessed on 23 June 2012
  2. Barneby RC (1991) Sensitivae censitae. A description of the genus Mimosa Linnaeus (Mimosaceae) in the New World. Mem N Y Bot Gard 65:1–835Google Scholar
  3. Bentham G (1876) Leguminosae III. Mimoseae. In: Martius CFP, Eichler AG (eds) Flora Brasiliensis, vol 5. London, pp 257–504Google Scholar
  4. Bessega C, Hopp HE, Fortunato RH (2008) Toward a phylogeny of Mimosa (Leguminosae, Mimosoideae): a preliminary analysis of southern South American species based on chloroplast DNA sequence. Ann Mo Bot Gard 95:567–569CrossRefGoogle Scholar
  5. Bortolini F, Dall’Agnol M, Schifino-Wittmann MT (2006) Molecular characterization of the USDA white clover (Trifolium repens L.) core collection by RAPD markers. Genet Resour Crop Evol 53:1601–1610CrossRefGoogle Scholar
  6. Caramori PH, Androcioli Filho A, Leal AC (1996) Coffee shade with Mimosa scabrella Benth. for frost protection in southern Brazil. Agrofor Syst 33:205–214CrossRefGoogle Scholar
  7. Dahmer N, Simon MF, Schifino-Wittmann MT, Hughes CE, Miotto STS, Giuliani JC (2011) Chromosome numbers in the genus Mimosa L.: cytotaxonomic and evolutionary implications. Plant Syst Evol 291:211–220CrossRefGoogle Scholar
  8. Escudero A, Iriondo JM, Torres ME (2003) Spatial analysis of genetic diversity as a tool for plant conservation. Biol Conserv 113:351–365CrossRefGoogle Scholar
  9. Hamrick JL (2004) Response of forest trees to global environmental changes. Forest Ecol Manag 197:323–335CrossRefGoogle Scholar
  10. Huziwara Y (1962) Karyotype analysis in some genera of Compositae. VIII. Further studies on the chromosomes of Asteraceae. Am J Bot 49:116–119CrossRefGoogle Scholar
  11. Lacerda DR, Acedo MDP, Lemos JP, Lovato MB (2001) Genetic diversity and structure of natural populations of Plathymenia reticulata (Mimosoideae), a tropical tree from the Brazilian Cerrado. Mol Ecol 10:1143–1152PubMedCrossRefGoogle Scholar
  12. Ledig FT (1992) Human impacts on genetic diversity in forest ecosystems. Oikos 63:87–108CrossRefGoogle Scholar
  13. Levan A, Fredga K, Sandberg AA (1964) Nomenclature for centromeric position on chromosomes. Hereditas 52:201–219CrossRefGoogle Scholar
  14. Lewis G, Schrire B, Mackinder B, Lock M (2005) Legumes of the world. Royal Botanic Garden Kew, UKGoogle Scholar
  15. Lorenzi H (1992) Árvores brasileiras I: manual de identificação e cultivo de plantas arbóreas nativas do Brasil. Instituto Plantarum Nova Odessa, BrazilGoogle Scholar
  16. Lorenzi H (1998) Árvores brasileiras II: manual de identificação e cultivo de plantas arbóreas nativas do Brasil. Instituto Plantarum Nova Odessa, BrazilGoogle Scholar
  17. Mantel N (1967) The detection of disease clustering and a generalizated regression approach. Cancer Res 27:209–220PubMedGoogle Scholar
  18. Miller MP (2005) Alleles in space (AIS): computer software for the joint analysis of interindividual spatial and genetic information. J Hered 96:722–724PubMedCrossRefGoogle Scholar
  19. Morales M, Wulff AF, Fortunato RH, Poggio L (2011) Karyotype studies in Mimosa (Mimosoideae, Leguminosae) from Southern South America and ecological and taxonomic relationships. Caryologia 64:203–214Google Scholar
  20. Pometti CL, Vilardi JC, Cialdella AM, Saidman BO (2010) Genetic diversity among the six varieties of Acacia caven (Leguminosae, Mimosoideae) evaluated at the molecular and phenotypic levels. Plant Syst Evol 284:187–199CrossRefGoogle Scholar
  21. Reeves A (2001) MicroMeasure: a new computer program for the collection and analysis of cytogenetic data. Genome 44:359–443CrossRefGoogle Scholar
  22. Rohlf FJ (2001) Ntsys PC numerical taxonomy and multivariate analysis system: version 2.1. Exeter Software, New YorkGoogle Scholar
  23. Roy A, Frascaria N, Mackay J, Bousquet J (1992) Segregation random amplified polymorphic DNAs (RAPDs) in Betula alleghaniensis. Theor Appl Genet 85:173–180CrossRefGoogle Scholar
  24. Seijo G (1993) Números cromosómicos en especies argentinas del género Mimosa (Leguminosae). Bol Soc Arg Bot 29:219–223Google Scholar
  25. Seijo G, Fernández A (2001) Chromosome numbers of some southernmost species of Mimosa L. (Leguminosae). Cytologia 66:19–23CrossRefGoogle Scholar
  26. Simon MF, Proença C (2000) Phytogeographic patterns of Mimosa (Mimosoideae, Leguminosae) in the Cerrado biome of Brazil: an indicator genus of high-altitude centers of endemism? Biol Conserv 96:279–296CrossRefGoogle Scholar
  27. Simon MF, Grether R, Queiroz LP, Särkinen TE, Dutra VF, Hughes CE (2011) The evolutionary history of Mimosa (Leguminosae): toward a phylogeny of the sensitive plants. Am J Bot 98(7):1201–1221PubMedCrossRefGoogle Scholar
  28. Sobierajski GR, Kageyama PY, Sebbenn AM (2006) Estimates of genetic parameters in Mimosa scabrella populations by random and mixed reproduction models. Crop Breed Appl Biotechnol 6:47–54Google Scholar
  29. Sokal RR, Oden NL (1978) Spatial autocorrelation analysis in biology 1. Methodol Biol J Linn Soc 10:199–228CrossRefGoogle Scholar
  30. Somarriba E, Kass D (2001) Estimates of above-ground biomass and nutrient accumulation in Mimosa scabrella fallows in southern Brazil. Agrofor Syst 51:77–84CrossRefGoogle Scholar
  31. Stebbins GL (1971) Chromosomal variation in higher plants. Edward Arnold, LondonGoogle Scholar
  32. Tian B, Yang HQ, Wong KM, Liu AZ, Ruan AY (2011) ISSR analysis shows low genetic diversity versus high genetic differentiation for giant bamboo, Dendrocalamus giganteus (Poaceae: Bambusoideae), in China populations. Genet Resour Crop Evol 59:901–908CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2012

Authors and Affiliations

  • Nair Dahmer
    • 1
    • 2
  • Maria Teresa Schifino-Wittmann
    • 1
    Email author
  • Divanilde Guerra
    • 1
  • Roberto Luis Weiler
    • 1
  1. 1.Depto. de Plantas Forrageiras e AgrometeorologiaUFRGS/FAPorto AlegreBrazil
  2. 2.Departamento de Biologia Vegetal, Instituto de BiologiaUniversidade Estadual de CampinasCampinasBrazil

Personalised recommendations