Genetic Resources and Crop Evolution

, Volume 60, Issue 2, pp 789–798 | Cite as

Diversity and structure of a sample of traditional Italian and Spanish tomato accessions

  • Santiago García-Martínez
  • Giandomenico Corrado
  • Juan José Ruiz
  • Rosa Rao
Research Article


Italy and Spain are the countries with the oldest record of tomato cultivation in Europe and arguably, with the higher number of traditional and heirloom varieties. In this work we evaluated the genetic diversity and structure in a sample of 26 cultivated accessions belonging to four traditional tomato types, Muchamiel and De la Pera from Spain, and San Marzano and Sorrento from Italy. The (GATA)4 fingerprinting of the 109 genotypes confirmed the ability of this DNA marker to discriminate tomato plants that are otherwise difficult to distinguish. Furthermore, both the estimated population structure and the genetic differentiation statistics were consistent in indicating that subpopulations are more likely to correspond to farmers’ breeding efforts and market specialization than to country-specific groups. Our results provide useful information not only for germplasm description and management but also for current breeding programs in both regions.


De la Pera (GATA)4 Muchamiel San Marzano Solanum lycopersicum Sorrento 



This work was partially supported by the Spanish MICINN through projects AGL2008-03822, AGL2011-26957, and IT2009-0005.


  1. Allendorf FW, Hohenlohe PA, Luikart G (2010) Genomics and the future of conservation genetics. Nat Rev Genet 11:697–709PubMedCrossRefGoogle Scholar
  2. Alonso A, García-Martínez S, Vázquez-Araujo L, Ruiz JJ, Carbonell-Barrachina AA (2010) Comparative post-harvest behaviour of traditional and virus-resistant Muchamiel tomatoes. J Sci Food Agric 90:1056–1062PubMedGoogle Scholar
  3. Andreakis N, Giordano I, Pentangelo A, Fogliano V, Graziani G, Monti LM, Rao R (2004) DNA fingerprinting and quality traits of corbarino cherry-like tomato landraces. J Agric Food Chem 52:3366–3371PubMedCrossRefGoogle Scholar
  4. Asfaw A, Blair MW, Almekinders CJM (2009) Genetic diversity and population structure of common bean (Phaseolus vulgaris L.) landraces from the East African highlands. Theor Appl Genet 120:1–12PubMedCrossRefGoogle Scholar
  5. Brugarolas M, Martínez-Carrasco L, Martínez-Poveda A, Ruiz JJ (2009) A competitive strategy for fruit and vegetable products: traditional varieties of tomato in the local market. Span J Agric Res 7:294–304Google Scholar
  6. Caramante M, Rao R, Monti LM, Corrado G (2009) Discrimination of San Marzano accessions: a comparison of minisatellite, CAPS and SSR markers in relation to morphological traits. Sci Hortic 120:560–564CrossRefGoogle Scholar
  7. Chao S, Dubcovsky J, Dvorak J, Luo MC, Baenziger S, Matnyazov R, Clark D, Talbert L, Anderson J, Dreisigacker S, Glover K, Chen J, Campbell K, Bruckner P, Rudd J, Haley S, Carver B, Perry S, Sorrells M, Akhunov E (2010) Population- and genome-specific patterns of linkage disequilibrium and SNP variation in spring and winter wheat (Triticum aestivum L.). BMC Genomics 11:727PubMedCrossRefGoogle Scholar
  8. Corrado G, Imperato A, La Mura M, Perri E, Rao R (2011) Genetic diversity among olive varieties of Southern Italy and the traceability of olive oil using SSR markers. J Horticult Sci Biotechnol 86:461–466Google Scholar
  9. Ercolano MR, Carli P, Soria A, Fogliano V, Frusciante L, Barone A (2008) Biochemical, sensorial and genomic profiling of traditional Italian tomato varieties. Euphytica 164:571–582CrossRefGoogle Scholar
  10. Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 14:2611–2620PubMedCrossRefGoogle Scholar
  11. Falush D, Stephens M, Pritchard JK (2003) Inference of population structure using multilocus genotype data: linked loci and correlated allele frequencies. Genetics 164:1567–1587PubMedGoogle Scholar
  12. García-Gusano M, García-Martínez S, Ruiz JJ (2004) Caracterización de variedades de tomate mediante marcadores SNP. Actas de Horticultura 41:123–126Google Scholar
  13. García-Martínez S, Andreani L, García-Gusano M, Geuna F, Ruiz JJ (2006) Evaluation of AFLPs and SSRs for tomato germplasm fingerprinting: utility for grouping closely related traditional cultivars. Genome 49(6):648–656PubMedCrossRefGoogle Scholar
  14. García-Martínez S, Gálvez-Sola LN, Alonso A, Agulló E, Rubio F, Ruiz JJ, Moral R (2011a) Quality assessment of tomato landraces and virus-resistant breeding lines: quick estimation by near-infrared reflectance (NIRS). J Sci Food Agric. doi: 10.1002/jsfa.4661 Google Scholar
  15. García-Martínez S, Grau A, Alonso A, Rubio F, Valero M, Ruiz JJ (2011b) UMH 1200, a breeding line within the Muchamiel tomato type resistant to three viruses. HortScience 46(7):1054–1055Google Scholar
  16. García-Martínez S, Grau A, Alonso A, Rubio F, Valero M, Ruiz JJ (2012) UMH 1203, a multiple-virus resistant fresh-market tomato breeding line for open field conditions. HortScience 47(1):124–125Google Scholar
  17. Jakobsson M, Rosenberg NA (2007) CLUMPP: a cluster matching and permutation program for dealing with label switching and multimodality in analysis of population structure. Bioinformatics 23:1801–1806PubMedCrossRefGoogle Scholar
  18. Kaemmer D, Weising K, Bayermann B, Börner T, Epplen JT, Kahl G (1995) Oligonucleotide fingerprinting of tomato DNA. Plant Breed 114:12–17CrossRefGoogle Scholar
  19. Lu Y, Yan J, Guimarães C, Taba S, Hao S, Gao S, Chen S, Li J, Zhang S, Vivek B, Magorokosho Z, Mugo S, Makumbi D, Parentoni S, Shah T, Rong T, Crouch J, Xu J (2009) Molecular characterization of global maize breeding germplasm based on genome-wide single nucleotide polymorphisms. Theor Appl Genet 120:93–115PubMedCrossRefGoogle Scholar
  20. Lynch M, Milligan BG (1994) Analysis of population genetic structure with RAPD markers. Mol Ecol 3:91–99PubMedCrossRefGoogle Scholar
  21. Martínez-Carrasco L, Brugarolas M, Martínez-Poveda A, García-Martínez S, Ruiz JJ Modelling perceived quality of tomato by structural equation analysis. Br Food J (in press)Google Scholar
  22. Mazzucatto A, Papa R, Bitochi E, Mosconi P, Nanni L, Negri V, Enea-Picarella M, Siligato F, Soressi GP, Tiranti B, Veronesi F (2009) Genetic diversity, structure and marker-trait associations in a collection of Italian tomato (Solanum lycopersicum L.) landraces. Theor Appl Genet 116:657–669CrossRefGoogle Scholar
  23. Melchiade D, Foroni I, Corrado G, Santangelo I, Rao R (2007) Authentication of the ‘Annurca’ apple in agro-food chain by amplification of microsatellite loci. Food Biotech 21:33–43CrossRefGoogle Scholar
  24. Miller JC, Tanksley SD (1990) RFLP analysis of phylogenetic relationships and genetic variation in the genus Lycopersicon. Theor Appl Genet 80:437–448Google Scholar
  25. Monti LM, Santangelo E, Corrado G, Rao R, Soressi GP, Scarascia-Magnozza GT (2004) Il San Marzano: problematiche e prospettive in relazione alla sua salvaguardia e alla necessita di interventi genetici. Agroindustria 3:97–104Google Scholar
  26. Muñoz-Falcón JE, Prohens J, Vilanova S, Nuez F (2008) Characterization, diversity, and relationships of the Spanish striped (Listada) eggplants: a model for the enhancement and protection of local heirlooms. Euphytica 164:405–419CrossRefGoogle Scholar
  27. Nei M, Li WH (1979) Mathematical model for studying genetic variation in terms of restriction endonucleases. Proc Natl Acad Sci USA 76:5269–5273PubMedCrossRefGoogle Scholar
  28. Paran I, Horowitz M, Zamir D, Wolf S (1995) Random amplified polymorphic DNA markers are useful for purity determination of tomato hybrids. HortScience 30(2):377Google Scholar
  29. Park YH, West MAL, St Clair DA (2004) Evaluation of AFLPs for germplasm fingerprinting and assessment of genetic diversity in cultivars of tomato (Lycopersicon esculentum L.). Genome 47:510–518PubMedCrossRefGoogle Scholar
  30. Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959PubMedGoogle Scholar
  31. Rao R, Corrado G, Bianchi M, Di Mauro A (2006) (GATA)4 DNA fingerprinting identifies morphologically characterized San Marzano tomato plants. Plant Breed 125:173–176CrossRefGoogle Scholar
  32. Rohlf FJ (1998) NTSYS-pc: Numerical taxonomy and multivariate analysis system, version 2.0, user guide. Exeter Software, New YorkGoogle Scholar
  33. Ruiz JJ, García-Martínez S (2009) Tomato varieties ‘Muchamiel’ and ‘De la pera’ from the southeast of Spain: Genetic improvement to promote on-farm conservation. In: Vetelainen M, Negri V, Maxted N (eds) European landrace: on-farm conservation, management and use. Bioversity Technical Bulletin no 15:171–176Google Scholar
  34. Ruiz JJ, Alonso A, García-Martínez S, Valero M, Blasco P, Ruiz-Bevia F (2005a) Quantitative analysis of flavour volatiles detects differences among closely related traditional cultivars of tomato. J Sci Food Agric 85:54–60CrossRefGoogle Scholar
  35. Ruiz JJ, García-Martínez S, Picó B, Gao M, Quiros CF (2005b) Genetic variability and relationship of closely related Spanish traditional varieties of tomato as detected by SRAP and SSR markers. J Am Soc Hortic Sci 130(1):88–94Google Scholar
  36. Ruiz JJ, Martínez N, Valero M, García-Martínez S, Moral R, Serrano M (2005c) Micronutrient composition and quality characteristics of traditional tomato cultivars in the South-East of Spain. Commun Soil Sci Plant Anal 36:649–660CrossRefGoogle Scholar
  37. Ruiz JJ, Valero M, García-Martínez S, Serrano M, Moral R (2006) Effect of recent genetic improvement on some analytical parameters of tomato fruit quality. Commun Soil Sci Plant Anal 37:2647–2658CrossRefGoogle Scholar
  38. Sambrook J, Fritschi EF, Maniatis T (1989) Molecular clonning: a laboratory manual. Cold Spring Harbor Laboratory, New YorkGoogle Scholar
  39. Sim SC, Robbins MD, Chilcott C, Zhu T, Francis DM (2009) Oligonucleotide array discovery of polymorphisms in cultivated tomato (Solanum lycopersicum L. reveals patterns of SNP variation associated with breeding. BMC Genomics 10:10CrossRefGoogle Scholar
  40. Sim SC, Robbins MD, Van Deynze A, Michel AP, Francis DM (2011) Population structure and genetic differentiation associated with breeding history and selection in tomato (Solanum lycopersicum L.). Heredity 106:927–935PubMedCrossRefGoogle Scholar
  41. Smulders MJM, Bredemeijer G, Rus-Kortekaas W, Arens P, Vosman B (1997) Use of short microsatellites from database sequences to generate polymorphisms among Lycopersicon esculentum cultivars and accessions of other Lycopersicon species. Theor Appl Genet 97:264–272CrossRefGoogle Scholar
  42. Sneath PHA, Sokal RR (1973) Numerical Taxonomy. Freeman, San FranciscoGoogle Scholar
  43. Terzopoulos PJ, Bebeli PJ (2010) Phenotypic diversity in Greek tomato (Solanum lycopersicum L.) landraces. Sci Hortic 126(2):138–144Google Scholar
  44. Vekemans X (2002) AFLP-SURV, version 1.0. Distributed by the author. Laboratoire de Genetique et Ecologie Vegetale, Universite′ Libre de Bruxelles, BelgiumGoogle Scholar
  45. Vosman B, Arens P (1997) Molecular characterization of GATA/GACA microsatellite repeats in tomato. Genome 40:25–33PubMedCrossRefGoogle Scholar
  46. Yang WC, Bai XD, Kabelka E, Eaton C, Kamoun S, van der Knaap E, Francis D (2004) Discovery of single nucleotide polymorphisms in Lycopersicon esculentum by computer aided analysis of expressed sequence tags. Mol Breed 14:21–34CrossRefGoogle Scholar
  47. Yi SS, Jatoi SA, Fujimura T, Yamanaka S, Watanabe J, Watanabe KN (2008) Potential loss of unique genetic diversity in tomato landraces by genetic colonization of modern cultivars at a non-center of origin. Plant Breed 127:189–196CrossRefGoogle Scholar
  48. Zeven AC (2002) Traditional maintenance breeding of landraces: 2. Practical and theoretical considerations on maintenance of variation of landraces by farmers and gardeners. Euphytica 123:147–158CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2012

Authors and Affiliations

  • Santiago García-Martínez
    • 1
  • Giandomenico Corrado
    • 2
  • Juan José Ruiz
    • 1
  • Rosa Rao
    • 2
  1. 1.Department of Applied BiologyMiguel Hernández UniversityOrihuelaSpain
  2. 2.Dipartimento di Scienze del Suolo, della Pianta, dell’Ambiente e delle Produzioni AnimaliUniversità degli Studi di Napoli Federico IIPorticiItaly

Personalised recommendations