Genetic Resources and Crop Evolution

, Volume 60, Issue 1, pp 335–353

Population structure of the primary gene pool of Oryza sativa in Thailand

Research Article

Abstract

The gene pool of cultivated Asian rice consists of wild rice (Oryza rufipogon Griff.), cultivated rice (O. sativa L.) and a weedy form (O. sativa f. spontanea). All three components are widespread in Thailand, frequently co-occurring within fields and providing the opportunity for gene flow and introgression. The purpose to this study is to understand the on-going evolutionary processes that affect the gene pool of rice by analysis of microsatellite variation. Results indicate that O. rufipogon, the wild ancestor of rice, has high levels of genetic variation both within and among populations. Moreover, the variation is structured predominantly by annual and perennial life history. High levels of variation are detected among cultivars indicating Thai cultivated rice has a broad genetic base with only a 20 % reduction in diversity from its wild ancestor. The weedy rice populations reveal varying levels of genetic variation, from nearly as high as wild rice to near zero. Weedy rice is genetically structured into 2 groups. Some populations of invasive weedy rice are the result of hybridization and gene flow between local wild rice and local cultivated rice in the regions of co-occurrence. Other populations of weedy rice are genetically nearly identical to the local cultivated rice. The diversity analysis indicates that the rice gene pool in Thailand is a dynamic genetic system. Gene flow is ongoing among its three main components, first between cultivated and wild rice resulting in weedy rice. Weedy rice in turn crosses with both cultivated varieties and wild rice.

Keywords

Gene flow Oryza rufipogon Griff Oryza sativa Primary gene pool Weedy rice 

Supplementary material

10722_2012_9839_MOESM1_ESM.doc (218 kb)
Supplementary material 1 (DOC 218 kb)

References

  1. Akimoto M, Shimamoto Y, Morishima H (1999) The extinction of genetic resources of Asian wild rice, Oryza rufipogon Griff.: a case study in Thailand. Genet Resour Crop Evol 46:419–425CrossRefGoogle Scholar
  2. Baker HG (1974) The evolution of weeds. Ann Rev Ecol Syst 5:1–24CrossRefGoogle Scholar
  3. Barbier P (1989a) Genetic variation and ecotypic differentiation in the wild rice species Oryza rufipogon. I. Population differentiation in life-history traits and isozymic loci. Jpn J Genet 64:259–271CrossRefGoogle Scholar
  4. Barbier P (1989b) Genetic variation and ecotypic differentiation in the wild rice species Oryza rufipogon. II. Influence of the mating system and life-history traits on the genetic structure of populations. Jpn J Genet 64:273–285CrossRefGoogle Scholar
  5. Bell R, Seng V (2004) Rainfed lowland rice-growing soils of Cambodia, Laos, and North-east Thailand. In: Seng V, Craswell E, Fukai S, Fischer K (eds) Water in agriculture. ACIAR proceedings no. 116e, pp 161–173Google Scholar
  6. Blair MW, Hedetale V, McCouch SR (2002) Fluorescent-labeled microsatellite panels useful for detecting allelic diversity in cultivated rice (Oryza sativa L.). Theor Appl Genet 105(2–3):449–457. doi:10.1007/s00122-002-0921-5 PubMedCrossRefGoogle Scholar
  7. Cai WH, Wang KX, Morishima H (2004) Comparison of population genetic structures of common wild rice (Oryza rufipogon Griff.), as revealed by analyses of quantitative traits, allozymes and RFLPs. Heredity 92:409–417PubMedCrossRefGoogle Scholar
  8. Cao Q, Lu BR, Xia H, Rong J, Sala F, Spada A, Grassi F (2006) Genetic diversity and origin of weedy rice (Oryza sativa f. spontanea) population found in North-eastern China revealed by simple sequence repeat (SSR) markers. Ann Bot 98:1241–1252PubMedCrossRefGoogle Scholar
  9. Cavalli-Sforza LL, Edwards AWF (1967) Phylogenetic analysis: models and estimation procedures. Evolution 21(3):550–570CrossRefGoogle Scholar
  10. Chang TT (1976) The origin, evolution, cultivation, dissemination, and diversification of Asian and African rices. Euphytica 25:425–441CrossRefGoogle Scholar
  11. Chen LJ, Lee DS, Song ZP, Suh HS, Lu BR (2004) Gene flow from cultivated rice (Oryza sativa) to its weedy and wild relatives. Ann Bot 93:67–73PubMedCrossRefGoogle Scholar
  12. de Wet JMJ, Harlan JR (1975) Weeds and domesticates: evolution in the man-made habitat. Econ Bot 29:99–107CrossRefGoogle Scholar
  13. Delouche JC, Burgos NR, Gealy DR, de San Martin DZ, Labrada R, Larinde M, Rosell C (2007) Weedy rices—origin, biology, ecology, and control. FAO plant production and protection paper 188, FAO, RomeGoogle Scholar
  14. Doebley JF, Gaut BS, Smith BD (2006) The molecular genetics of crop domestication. Cell 127:1309–1321PubMedCrossRefGoogle Scholar
  15. Doyle JJ, Doyle JL (1987) A rapid DNA isolation procedure from small quantities of fresh leaf tissues. Phytochem Bull 19:11–15Google Scholar
  16. Ellstrand NC (2003) Dangerous liaisons? When cultivated plants mate with their wild relatives. Johns Hopkins University Press, BaltimoreGoogle Scholar
  17. Ellstrand NC, Prentice HC, Hancock JF (1999) Gene flow and introgression from domesticated plants into their wild relatives. Annu Rev Ecol Syst 30:539–563CrossRefGoogle Scholar
  18. Ellstrand NC, Heredia SM, Leak-Garcia JA, Heraty JM, Burger JC, Yao L, Nohzadeh-Malakshan S, Ridley CE (2010) Crops gone wild: evolution of weeds and invasives from domesticated ancestors. Evol Appl 3:494–504CrossRefGoogle Scholar
  19. Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 14:2611–2620PubMedCrossRefGoogle Scholar
  20. Eyre-Walker AR, Gaut RL, Hilton H, Feldman DL, Gaut BS (1998) Investigation of the bottleneck leading to the domestication of maize. Proc Natl Acad Sci USA 95:4441–4446PubMedCrossRefGoogle Scholar
  21. Gao LZ (2004) Population structure and conservation genetics of wild rice Oryza rufipogon (Poaceae): a region-wide perspective from microsatellite variation. Mol Ecol 13:1009–1024PubMedCrossRefGoogle Scholar
  22. Gealy DR, Tai TH, Sneller CH (2002) Identification of red rice, rice, and hybrid populations using microsatellite markers. Weed Sci 50:333–339CrossRefGoogle Scholar
  23. Gealy DR, Mitten DH, Rutger JN (2003) Gene flow between red rice (Oryza sativa) and herbicide-resistant rice (O. sativa): implications for weed management. Weed Technol 17:627–645CrossRefGoogle Scholar
  24. Goudet J (2001) FSTAT, a program to estimate and test gene diversities and fixation indices (version 2.9.3). Available from http://www2.unil.ch/popgen/softwares/fstat.htm
  25. Gressel J (2005) Crop ferality and volunteerism. CRC Press, Boca RatonCrossRefGoogle Scholar
  26. Gross BL, Reagon M, Hsu SC, Caicedo AL, Jia Y, Olsen KM (2010) Seeing red: the origin of grain pigmentation in US weedy rice. Mol Ecol 19:3380–3393PubMedCrossRefGoogle Scholar
  27. Harlan JR (1992) Crop and Man, 2nd edn. Madison, WisconsinGoogle Scholar
  28. Harlan JR, de Wet JMJ (1971) Towards a rational classification of cultivated plants. Taxon 20:509–517CrossRefGoogle Scholar
  29. Hyten D, Song Q, Zhu Y, Choi IY, Nelson RL, Costa JM, Specht JE, Shoemaker RC, Cregan PB (2006) Impact of genetic bottlenecks on soybean genome diversity. Proc Natl Acad Sci USA 103:16666–16671PubMedCrossRefGoogle Scholar
  30. Konchan S, Kano Y (1996) Spread of direct seeded lowland rice in Northeast Thailand: farmer’s adaptation to economic growth. Southeast Asian Stud 33(4):523–546Google Scholar
  31. Kuroda Y, Sato YI, Bounphanousay C, Kono Y, Tanaka K (2007) Gene flow from cultivated rice (Oryza sativa L.) to wild Oryza species (O. rufipogon Griff. and O. nivara Sharma and Shastry) on the Vientiane plain of Laos. Euphytica 142:75–83CrossRefGoogle Scholar
  32. Langevin SA, Clay K, Grace JB (1990) The incidence and effects of hybridization between cultivated rice and its related weed red rice (Oryza sativa L.). Evolution 44(4):1000–1008CrossRefGoogle Scholar
  33. Linhart YB, Grant MC (1996) Evolutionary significance of local genetic differentiation in plants. Annu Rev Ecoy Syst 27:237–277CrossRefGoogle Scholar
  34. Liu K, Muse SV (2005) POWERMARKER: integrated analysis environment for genetic marker data. Bioinformatics 21:2128–2129PubMedCrossRefGoogle Scholar
  35. Londo JP, Schaal BA (2007) Origin and population genetics of weedy red rice in the USA. Mol Ecol 16:4523–4535PubMedCrossRefGoogle Scholar
  36. Lu BR, Snow AA (2005) Gene flow from genetically modified rice and its environmental consequences. Bioscience 55(8):669–678CrossRefGoogle Scholar
  37. Luikart G, Sherwin WB, Steele BM, Allendorf FW (1998) Usefulness of molecular markers for detecting population bottlenecks via monitoring genetic change. Mol Ecol 7:963–974PubMedCrossRefGoogle Scholar
  38. Maneechote C, Jamjod S, Rerkasem B (2004) Invasion of weedy rice in rice fields in Thailand: problems and management. IRRN 29(2):20–22Google Scholar
  39. McCouch SR, Teytelman L, Xu Y et al (2002) Development and mapping of 2240 new SSR markers of rice (Oryza sativa L.). DNA Res 9:199–207PubMedCrossRefGoogle Scholar
  40. McCouch SR, Chen X, Panaud O, Temnykh S, Xu Y, Cho YG, Huang N, Ishii T, Blair M (1997) Microsatellite marker development, mapping and applications in rice genetics and breeding. Plant Mol Biol 35:89–99Google Scholar
  41. Messeguer J, Fogher C, Guiderdoni E, Marfa V, Catala MM, Baldi G, Mele E (2001) Field assessments of gene flow from transgenic to cultivated rice (Oryza sativa L.) using herbicide resistance gene as tracer marker. Theor Appl Genet 103:1151–1159CrossRefGoogle Scholar
  42. Mohammadi SA, Prasanna BM (2003) Analysis of genetic diversity in crop plants-salient statistical tools and considerations. Crop Sci 43:1235–1248CrossRefGoogle Scholar
  43. Nei M (1973) Analysis of gene diversity in subdivided populations. Proc Nat Acad Sci USA 70(12):3321–3323PubMedCrossRefGoogle Scholar
  44. Ngu MS, Sabu KK, Lim LS, Abdullah MZ, Wickneswari R (2010) Genetic structure of Oryza rufipogon Griff. Natural populations in Malaysia: implication for conservation and genetic introgression of cultivated rice. Trop Plant Biol 3:227–239CrossRefGoogle Scholar
  45. Niruntrayakul S (2008) Gene flow between cultivated and wild rice. Dissertation, Chiang Mai UniversityGoogle Scholar
  46. Niruntrayakul S, Rerkasem B, Jamjod S (2009) Crossability between cultivated rice (Oryza sativa) and common wild rice (O. rufipogon) and characterization of F1 and F2 populations. Sci Asia 35:161–169CrossRefGoogle Scholar
  47. Noldin JS (2000) Red rice status and management in the Americas. In: Baki BB, Chin DV, Mortimer M (eds) Wild and weedy rice in rice ecosystem in Asia-a review. IRRN. pp 21–24Google Scholar
  48. Oard J, Cohn MA, Linscombe S, Gealy D, Gravois K (2000) Field evaluation of seed production, shattering, and dormancy in hybrid populations of transgenic rice (Oryza sativa) and the weed, red rice (Oryza sativa). Plant Sci 157:13–22PubMedCrossRefGoogle Scholar
  49. Oka H (1988) Origin of cultivated rice. Japan Scientific Societies Press, TokyoGoogle Scholar
  50. Oka HI, Chang WT (1961) Hybrid swarms between wild and cultivated rice species, Oryza perennis and O. sativa. Evolution 15:418–430CrossRefGoogle Scholar
  51. Peakall R, Smouse PE (2006) GenAlEx 6: genetic analysis in Excel. Population genetic software for teaching and research. Mol Ecol Notes 6:288–295CrossRefGoogle Scholar
  52. Pritchard JK, Wen W (2004) Documentation for Structure software: version 2. http://pritch.bsd.uchicago.edu/software.html
  53. Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959PubMedGoogle Scholar
  54. Pusadee T, Jamjod S, Chiang YC, Rerkasem B, Schaal BA (2009) Genetic structure and isolation by distance in a landraces of Thai rice. Proc Natl Acad Sci USA 106(33):13880–13885PubMedCrossRefGoogle Scholar
  55. Reagon M, Thurber CS, Gross B, Olsen KM, Jia Y, Caicedo AL (2010) Genomic patterns of nucleotide diversity in divergent populations of U.S. weedy rice. BMC Evol Biol 10:180Google Scholar
  56. Rerkasem B, Rerkasem K (2002) Agrodiversity for in situ conservation of Thailand’s native rice germplasm. Chiang Mai Univ J 1:129–148Google Scholar
  57. Sanni KA, Fawole I, Guei RG, Ojo DK, Somado EA, Ogunbayo SA, Sanchez I (2007) Geographical patterns of phenotypic diversity in Oryza sativa landraces of Cote d’Ivoire. Euphytica 160:389–400CrossRefGoogle Scholar
  58. Sano Y, Morishima H (1982) Variation in resource allocation and adaptive strategy of wild rice, Oryza perennis Moench. Bot Gaz 143(4):518–523CrossRefGoogle Scholar
  59. Sano Y, Morishima H, Oka HI (1980) Intermediate perennial-annual populations of Oryza perennis found in Thailand and their evolutionary significance. Bot Mag Tokyo 93:291–305CrossRefGoogle Scholar
  60. Shishido R, Kikuchi M, Nomura K, Ikehashi H (2006) Evaluation of genetic diversity of wild rice (Oryza rufipogon Griff.) in Myanmar using simple sequence repeats (SSRs). Genet Resour Crop Evol 53:179–186CrossRefGoogle Scholar
  61. Song ZP, Lu BR, Zhu YG, Chen JK (2003a) Gene flow from cultivated rice to the wild species Oryza rufipogon under experimental field conditions. New Phytol 157:67–665CrossRefGoogle Scholar
  62. Song ZP, Xu X, Wang B, Chen JK, Lu BR (2003b) Genetic diversity in the northernmost Oryza rufipogon populations estimated by SSR markers. Theor Appl Genet 107:1492–1499PubMedCrossRefGoogle Scholar
  63. Song Z, Li B, Chen J, Lu BR (2005) Genetic diversity and conservation of common wild rice (Oryza rufipogon) in China. Plant Species Biol 20:83–92CrossRefGoogle Scholar
  64. Tamura K, Peterson D, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739PubMedCrossRefGoogle Scholar
  65. Temnykh S, Park WD, Ayers N, Cartinhour S, Hauck N, Lipovich L,Cho YG, Ishii T, McCouch SR (2000) Mapping and genome organization of microsatellite sequences in rice (Oryza sativa L.). Theor Appl Genet 100:697–712Google Scholar
  66. Vaughan LK, Ottis BV, Prazak-Havey AM, Sneller C, Chandler JM, Park WD (2001) Is all red rice found in commercial rice really Oryza sativa? Weed Sci 49:468–476CrossRefGoogle Scholar
  67. Vaughan DA, Morishima H, Kadowaki K (2003) Diversity in the Oryza genus. Curr Opin Plant Biol 6:139–146PubMedCrossRefGoogle Scholar
  68. Vaughan DA, Sanchez PL, Ushiki J, Kaga A, Tomooka N (2005) Chapter 16 Asian rice and weedy rice evolutionary perspectives. In: Gressel J (Ed) Crop ferality and volunteerism. CRC Press, Boca Raton, pp 257–277Google Scholar
  69. Vaughan DA, Lu BR, Tomooka N (2008) The evolving story of rice evolution. Plant Sci 174:394–408CrossRefGoogle Scholar
  70. Wang MX, Zhang HL, Zhang DL, Qi YW et al (2008) Genetic structure of Oryza rufipogon Griff. in China. Heredity 101:527–535PubMedCrossRefGoogle Scholar
  71. Weir BS (1990) Genetic data analysis: methods for discrete population genetic data. Sinauer Associates Inc., SunderlandGoogle Scholar
  72. Weir BS, Cockerham CC (1984) Estimating F-statistics for the analysis of population structure. Evolution 38:1358–1370CrossRefGoogle Scholar
  73. Wiley RH (1981) Social structure and individual ontogenies: problems of description, mechanism, and evolution. In: Bateson PPG, Klopfer PH (eds) Perspecitves in ethology, vol 4. Plenum Press, New York, pp 105–133CrossRefGoogle Scholar
  74. Xia HB, Xia H, Ellstrand NC, Yang C, Lu BR (2011) Rapid evolutionary divergence and ecotypic diversification of germination behavior in weedy rice populations. New Phytol 19(4):1119–1127Google Scholar
  75. Yeh FC, Yang RC, Boyle TBJ (1999) POPGENE, version 1.32 Microsoft window-based freeware for population genetic analysis. University of Alberta, EdmontonGoogle Scholar
  76. Zhang N, Linscombe S, Oard J (2003) Outcrossing frequency and genetic analysis of hybrids between transgenic glufosinate herbicide resistant rice and the weed, red rice. Euphytica 130:35–45CrossRefGoogle Scholar
  77. Zheng XM, Ge S (2010) Ecological divergence in the presence of gene flow in two closely related Oryza species (Oryza rufipogon and O. nivara). Mol Ecol 19:2439–2454PubMedCrossRefGoogle Scholar
  78. Zhou HF, Xie ZW, Ge S (2003) Microsatellite analysis of genetic diversity and population genetic structure of a wild rice (Oryza rufipogon Griff.) in China. Theor Appl Genet 107:332–339PubMedCrossRefGoogle Scholar
  79. Zhou HF, Zheng XM, Wei RX, Second G, Vaughan DA, Ge S (2008) Contrasting population genetic structure and gene flow between Oryza rufipogon and Oryza sativa. Theor Appl Genet 117:1181–1189PubMedCrossRefGoogle Scholar
  80. Zhu Q, Zheng X, Luo J, Gaut BS, Ge S (2007) Multilocus analysis of nucleotide variation of Oryza sativa and its wild relatives: severe bottleneck during domestication of rice. Mol Biol Evol 24(3):875–888PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2012

Authors and Affiliations

  1. 1.Department of BiologyWashington University in St. LouisSt. LouisUSA
  2. 2.Lanna Rice Research and Cultural CentreChiang Mai UniversityChiang MaiThailand
  3. 3.Department of Plant Science and Natural Resource, Faculty of AgricultureChiang Mai UniversityChiang MaiThailand

Personalised recommendations