Genetic Resources and Crop Evolution

, Volume 59, Issue 6, pp 1033–1053 | Cite as

Diversity and relationships of multipurpose seabuckthorn (Hippophae L.) germplasm from the Indian Himalayas as assessed by AFLP and SAMPL markers

  • S. N. Raina
  • S. Jain
  • D. Sehgal
  • A. Kumar
  • T. H. Dar
  • V. Bhat
  • V. Pandey
  • S. Vaishnavi
  • A. Bhargav
  • V. Singh
  • V. Rani
  • R. Tandon
  • M. Tewari
  • A. Mahmoudi
Research Article

Abstract

Seabuckthorn, a non-leguminous nodule bearing dioecious shrub, is a storehouse of neutraceutical, pharmaceutical and cosmetic usage. The 348 genotypes of Hippophae rhamnoides ssp. turkestanica, H. salicifolia and H. tibetana were collected from 194 locations at 46 major sites across ~1,500 km from north-east to north-west Himalayas, harboring one of the most harsh, highly variable climatic and ecological conditions and rugged rocky terrain in the range of 3,000–5,000 m altitude. Amplified fragment length polymorphism (AFLP) and selective amplification of microsatellite polymorphic loci (SAMPL) DNA markers were utilized to assess, the genetic diversity of total spectrum of Himalayan germplasm resources and interrelationships among Hippophae taxa. A total of 151, 50, and 41 AFLP loci were detected in Hippophae rhamnoides ssp. turkestanica, H. salicifolia and H. tibetana, respectively; of these, 92.6, 30.6 and 25.1% were polymorphic. For SAMPL, the number of markers and polymorphism for these species were, respectively, 77 (77.7%), 41 (41.4%), and 23 (23.2%). Nei’s genetic diversity and Shannon’s information index values revealed that populations of H. rhamnoides ssp. turkestanica in Sumur and Raling in Ladakh and Lahaul-Spiti, respectively, were the most diverse. In H. salicifolia and H. tibetana, the populations in Changu, and Takcha and Guling in Spiti valley, were the most diverse. In H. rhamnoides ssp. turkestanica, high level of interpopulation genetic diversity with the little intra-population diversity was accompanied by very low gene flow (Nm) range, estimated by AFLP (0.571–0.943) and SAMPL (0.321–0.726) markers. In H. rhamnoides ssp. turkestanica, the genotypes collected from Uttaranchal were found to be the least diverse. The exclusive characteristics of the nuclear genome in the Uttaranchal genotypes warrant new species rank more closer to H. salicifolia rather than to H. rhamnoides ssp. turkestanica. The present results also provide explicit evidence to suggest that both H. salicifolia and H. tibetana deserve species rank.

Keywords

Diversity Hippophae taxa Indian Himalayas Nomenclature Nuclear genome 

Notes

Acknowledgments

Thanks are due to Defense Research and Development Organization (DRDO), Government of India, for financial support.

References

  1. Bartish IV, Jeppsson N, Nybom H (1999) Population genetic structure in the dioecious pioneer plant species Hippophae rhamnoides investigated by random amplified polymorphic DNA (RAPD) markers. Mol Ecol 8:791–802CrossRefGoogle Scholar
  2. Bartish IV, Jeppsson N, Bartish GI LUR, Nybom H (2000) Inter- and intraspecific genetic variation in Hippophae (Eleagnaceae) investigated by RAPD markers. Plant Syst Evol 225:85–101CrossRefGoogle Scholar
  3. Bartish IV, Jeppsson N, Nybom H, Swenson U (2002) Phylogeny of Hippophae (Eleagnaceae) inferred from parsimony analysis of chloroplast DNA and morphology. Syst Bot 27:41–54Google Scholar
  4. Basistha BC, Adhikari IM, Deokata KP, Thapa KK (2001) A case study of Hippophae L. with special reference to agro-technique in the Sikkim Himalayas. In: Souvenir of international workshop on seabuckthorn, New DelhiGoogle Scholar
  5. Bernath J, Foldesi D (1992) Seabuckthorn (Hippophae rhamnoides L.)—a promising new medicinal and food crop. J Herbs Spices Med Plants 1:27–35CrossRefGoogle Scholar
  6. Comes HP, Abbott RJ (2000) Random amplified polymorphic DNA (RAPD) and quantitative trait analyses across a major phylogeographical break in the Mediterranean ragwort Senecio gallicus Vill. (Asteraceae). Mol Ecol 9:61–76PubMedCrossRefGoogle Scholar
  7. Dwivedi SK, Singh B (2003) Research on seabuckthorn in Ladakh. In: Singh V (ed) Seabuckthorn (Hippophae L.) A multipurpose wonder plant, vol I, botany, harvesting and processing technologies. Indus Publishing Company, New Delhi, pp 499–503Google Scholar
  8. Dwivedi SK, Singh B, Attrey DP (2001) Studies on the distribution, propagation and utilization of seabuckthorn in Ladakh. In: Proceedings of international workshop Seabuckthorn, New Delhi, pp 20–24Google Scholar
  9. Dwivedi SK, Singh R, Ahmed Z (2006) Morpho-biochemical characteristics of seabuckthorn (Hippophae rhamnoides) growing in cold arid Ladakh Himalayas. In: Virender S (ed) Seabuckthorn (Hippophae L.): a multipurpose wonder plant, vol II, biochemistry and pharmacology. Daya Publishing House, Delhi, pp 151–158Google Scholar
  10. Eliseev IP (1983) The question of the origin and systematics of the genus Hippophae L. Plod. I yagod. Kul’tury, Russia, pp 3–12Google Scholar
  11. Endler J (1977) Geographic variation, speciation, and clines. Princeton University Press, PrincetonGoogle Scholar
  12. Gabrielsen T, Bachmann MK, Jacobsen KS, Brochmann C (1997) Glacial survival does not matter. RAPD phylogeography of Nordic Saxifraga oppositifolia. Mol Ecol 6:831–842CrossRefGoogle Scholar
  13. Graham J, Squire GR, Marshall B, Harrison RE (1997) Spatially dependent genetic diversity within and between colonies of wild raspberry Rubus idaeus detected using RAPD markers. Mol Ecol 6:1001–1008CrossRefGoogle Scholar
  14. Hamrick JL, Godt MJW (1996) Conservation genetics of endemic plant species. In: Avise JC, Hamrick JL (eds) Conservation genetics: case histories from nature. Chapman and Hall, New York, pp 281–304Google Scholar
  15. Hamrick JL, Loveless MD (1989) Association between the breeding system and the genetic structure of tropical tree populations. In: Bock J, Linhart YB (eds) Evolutionary ecology of plants. West view press, Bouldercolo, pp 131–146Google Scholar
  16. Hyvonen J (1996) On phylogeny of Hippophae (Eleagnaceae). Nord J Bot 16:51–62CrossRefGoogle Scholar
  17. Kala CP (2005) Indigenous uses, population density, and conservation of threatened medicinal plants in protected areas of the Indian Himalayas. Conser Biol 19:368–378CrossRefGoogle Scholar
  18. Kimura M, Weiss GW (1964) The stepping stone model of population structure and the decrease of genetic correlation with distance. Genetics 49:561–576PubMedGoogle Scholar
  19. Lewontin RC (1974) The genetic basis of evolutionary change. Columbia University Press, New YorkGoogle Scholar
  20. Li H, Ruan CJ, Silva JAT (2009) Identification and genetic relationship based on ISSR analysis in a germplasm collection of seabuckthorn (Hippophae L.) from China and other countries. Scientia Hort 123:263–271CrossRefGoogle Scholar
  21. Lian Y, Chen X (1993) Study on the germplasm resource of the genus Hippophae L. In: International symposium Seabuckthorn (Hippophae rhamnoides), Novosibirsk, pp 157–161Google Scholar
  22. Lian YS, Chen XL (1996) Systematic classification of the genus Hippophae L. Hippophae 9:15–24Google Scholar
  23. Lian YS, Chen XL (2000) The regular pattern of distribution on the natural components in plants of the genus Hippophae L. J Northwest Nor Univ 36:113–128Google Scholar
  24. Lian YS, Chen XL, Lian H (1998) Systematic classification of the genus Hippophae L. Seabuckthorn Res 1:13–23Google Scholar
  25. Loveless MP, Hamrick JL (1984) Ecological determinants of genetic structure in plant populations. Ann Rev Ecol Syst 15:65–95CrossRefGoogle Scholar
  26. Lu R (1997) Eco-geographical distribution of seabuckthorn and prospects of International co-operation. In: Lu S, Li M, Hu J, Liu S (eds) Worldwide research and development of Seabuckthorn. China Science and Technology Press, Beijing, pp 11–22Google Scholar
  27. Mantel N (1967) The detection of disease clustering and a generalized regression approach. Can Res 27:209–220Google Scholar
  28. McDermott JM, McDonald BA (1993) Gene flow in plant pathosystems. Ann Rev Phytopath 31:353–373CrossRefGoogle Scholar
  29. Murray MG, Thompson WF (1980) Rapid isolation of high molecular weight plant DNA. Nucleic Acid Res 8:4321–4326PubMedCrossRefGoogle Scholar
  30. Nei M (1973) Analysis of genetic diversity in subdivided populations. Proc Natl Acad Sci USA 70:3321–3323PubMedCrossRefGoogle Scholar
  31. Nei M (1978) Estimation of average heterozygosity and genetic distance from a small number of individuals. Genetics 89:583–590Google Scholar
  32. Pearson ML, Rogers JA (1967) Hippophae rhamnoides L. J Ecol 50:501–513Google Scholar
  33. Perrier X, Jacquemond-Collet JP (2006) DARwin softwareGoogle Scholar
  34. Perron M, Perry DJ, Andalo C, Bousquet J (2000) Evidence from sequence-tagged-site markers of a recent progenitor-derivative species pair in conifers. Proc Natl Acad Sci USA 97:11331–11336PubMedCrossRefGoogle Scholar
  35. Raina SN, Kojima T, Rani V, Ogihara Y, Singh KP, Devarumath RM (2001) RAPD and ISSR fingerprints as useful genetic markers for analysis of genetic diversity, varietal identification, and phylogenetic relationships in peanut (Arachis hypogaea) cultivars and wild species. Genome 44:763–772PubMedGoogle Scholar
  36. Rohlf FJ (1998) NTSYS—pc: numerical taxonomy and multivariate analysis system version 2.02 K. Applied Biostatistics, New YorkGoogle Scholar
  37. Rongsen L (1992) Seabuckthorn—a multipurpose plant species for fragile mountains. ICIMOD, Kathmandu, Nepal, p 62Google Scholar
  38. Rousi A (1971) The genus Hippophae L.—a taxonomic study. Ann Bot Fennici 8(3):177–227Google Scholar
  39. Ruan CJ, Li DQ (2000) Function and benefits of seabuckthorn improving eco-environment of loess plateau. Environ Prot 5:30–31Google Scholar
  40. Ruan CJ, Li DQ (2002) Analysis on the community characteristics of Hippophae rhamnoides L. plantation and water and nutritionof woodland in Loess Hilly Region. J Appl Ecol 13:1061–1064Google Scholar
  41. Ruan CJ, Li DQ (2005) AFLP fingerprinting analysis of some cultivated varieties of seabuckthorn (Hippophae rhamnoides). J Genet 84:311–316PubMedCrossRefGoogle Scholar
  42. Ruan C, Qin P, Zheng J et al (2004) Genetic relationships among some cultivars of seabuckthorn from China, Russia and Mongolia based on RAPD analysis. Scien Hort 101:417–426CrossRefGoogle Scholar
  43. Sarwat M, Das S, Srivastava PS (2011) AFLP and SAMPL markers for characterization of genetic diversity in Terminalia arjuna: a backbone tree of Tasar silk industry. Plant Syst Evol 293:13–23CrossRefGoogle Scholar
  44. Sehgal D, Bhat V, Raina SN (2008a) Advent of DNA markers to decipher genome sequence polymorphism. In: Kirti PB (ed) Handbook of new technologies for genetic improvement of grain legumes. Haworth Press, New York, pp 477–495Google Scholar
  45. Sehgal D, Bhat V, Raina SN (2008b) Applicability of DNA markers for genome diagnostics of grain legumes. In: Kirti PB (ed) Handbook of new technologies for genetic improvement of grain legumes. Haworth Press, New York, pp 497–557Google Scholar
  46. Sehgal D, Rajpal V, Raina SN, Sasanuma T, Sasakuma T (2008c) Assaying polymorphism at DNA sequence level for new and novel genetic diversity diagnostics of the safflower (Carthamus tinctorius L.) world germplasm resources. Genetica 135:457–470PubMedCrossRefGoogle Scholar
  47. Sehgal D, Raina SN, Devarumath RM, Sasanuma T, Sasakuma T (2009) Nuclear DNA assay in solving issues related to ancestry of the domesticated diploid safflower (Carthamus tinctorius L.) and the polyploid (Carthamus) genotypes, and phylogenetic and genomic relationships in the genus Carthamus L. (Asteraceae). Mol Phyl Evol 53:631–644CrossRefGoogle Scholar
  48. Servettaz C (1908) Monographie der Elaeagnaceae. Beihefte zum Botanischen Centralblatt 25:18Google Scholar
  49. Servettaz C (1909) Monographie des Elaegnacees–Beih. Bot Centralbl 25:1–420Google Scholar
  50. Sheng HM, An LZ, Chen T, Xu SJ, Liu GX, Zheng XL, Pu LL, Liu YJ, Lian YS (2006) Analysis of genetic diversity and relationships among and within species of Hippophae (Eleagnaceae) based on RAPD markers. Plant Syst Evol 260:25–37CrossRefGoogle Scholar
  51. Singh V (2003) Geographical adaptation and distribution of seabuckthorn (Hippophae L.) resources. In: Singh V (ed) Seabuckthorn (Hippophae L.). A multipurpose wonder plant, vol I: botany, harvesting and processing technologies. Indus Publishing Company, New Delhi, pp 21–34Google Scholar
  52. Singh V, Singh RK (2004) Morpho-biochemical variations in seabuckthorn (Hippophae L.) populations growing in Lahaul valley, dry temperate Himalayas. The Indian Forester 130:663–672Google Scholar
  53. Singh V, Singh B, Awasthi CP (1995) Distribution, taxonomy and nutritional values of seabuckthorn (Hippophae L.) growing in dry temperate Himalayas. In: Proceedings of interernational workshop Seabuckthorn, ICRTS, Beijing, China, pp 52–59Google Scholar
  54. Sun K, Chen X, Ma R, Li C, Wang Q, Ge S (2002) Molecular phylogenetics of Hippophae L. (Eleagnaceae) based on the internal transcribed spacer (ITS) sequences of nrDNA. Plant Syst Evol 235:121–134CrossRefGoogle Scholar
  55. Sun K, Chen W, Ma R, Chen X, Li A, Ge S (2006) Genetic variation in Hippophae rhamnoides ssp. sinensis (Eleagnaceae) revealed by RAPD markers. Biochem Genet 44:186–197PubMedCrossRefGoogle Scholar
  56. Tang X (2002) Intrinsic change of physical and chemical properties of seabuckthorn (Hippophae rhamnoides) and implications for berry maturity and quality. J Hort Sci Bio 77:177–185Google Scholar
  57. Tang T, Zhong Y, Jian S, Shi S (2003) Genetic diversity of Hibiscus tiliaceous (Malvaceae) in China assessed using AFLP markers. Ann Bot 92:409–414PubMedCrossRefGoogle Scholar
  58. Tian C, Lei Y, Shi S, Nan P, Chen J, Zhong Y (2004) Genetic diversity of seabuckthorn (Hippophae rhamnoides) populations in northeastern and northwestern China as revealed by ISSR markers. New Forests 27:229–237CrossRefGoogle Scholar
  59. Wang A, Zhang Q, Wan D (2008) Nine microsatellite DNA primers for Hippophae rhamnoides ssp. sinensis (Eleagnaeceae). Conserv Genet 9:969–971CrossRefGoogle Scholar
  60. White G, Powell W (1997) Isolation and characterisation of microsatellite loci in Swietenia humilis (Meliaceae): an endangered tropical hardwood species. Mol Ecol 6:851–860CrossRefGoogle Scholar
  61. Yan Z, Denneboom C, Hattendorf A (2005) Construction of an integrated map of rose with AFLP, SSR, PK, RGA, RFLP, SCAR and morphological markers. Theor Appl Genet 110:766–777PubMedCrossRefGoogle Scholar
  62. Yao Y, Tigerstedt PMA (1993) Isozyme studies of genetic diversity and evolution in Hippophae. Genet Resour Crop Evol 40:153–164CrossRefGoogle Scholar
  63. Yeh FC, Young RC, Timothy B, Boyle TB, Ye ZH, Mao JX (1997) POPGENE, the user friendly shareware for population genetic analysis. Molecular Biology and Biotechnology Centre, University of Alberta, CanadaGoogle Scholar
  64. Yeliseyev IP (1974) Nekotoryje soobrazheniya o sistematike roda Hippophae L. Tr Gor’K SKh Inst 77:53–59Google Scholar
  65. Zeb A (2004) Important therapeutic uses of sea buckthorn (Hippophae): a review. J Biol Sci 4:687–693CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • S. N. Raina
    • 1
    • 7
  • S. Jain
    • 1
  • D. Sehgal
    • 2
  • A. Kumar
    • 3
  • T. H. Dar
    • 1
  • V. Bhat
    • 1
  • V. Pandey
    • 1
  • S. Vaishnavi
    • 4
  • A. Bhargav
    • 1
  • V. Singh
    • 5
  • V. Rani
    • 1
  • R. Tandon
    • 1
  • M. Tewari
    • 1
  • A. Mahmoudi
    • 6
  1. 1.Department of Botany, Laboratory of Cellular and Molecular CytogeneticsUniversity of DelhiDelhiIndia
  2. 2.Institute of Biological, Environmental and Rural SciencesAberystwyth UniversityGogerddan, Aberyswyth, CeredigionUK
  3. 3.Department of BotanyVinoba Bhave UniversityHazaribagh, JharkhandIndia
  4. 4.School of BiotechnologyShri Mata Vaishno Devi UniversityKatraIndia
  5. 5.Department of Biology and Environmental SciencesCSK Himachal Pradesh Agricultural UniversityPalampurIndia
  6. 6.Department of BiologyUniversity of MazandaranBabolsarIran
  7. 7.Amity Institute of BiotechnologyAmity UniversityNoidaIndia

Personalised recommendations