Advertisement

Genetic Resources and Crop Evolution

, Volume 59, Issue 2, pp 277–288 | Cite as

Karyotype characterization reveals an up and down of 45S and 5S rDNA sites in Crotalaria (Leguminosae-Papilionoideae) species of the section Hedriocarpae subsection Macrostachyae

  • A. G. Morales
  • M. L. R. Aguiar-Perecin
  • M. Mondin
Research Article

Abstract

The genus Crotalaria is one of the largest within the family Leguminosae-Papilionoideae, with more than 600 species. However, few karyotypes have been described. In the present paper, five species belonging to the section Hedriocarpae were studied (subsection Machrostachyae), in order to better understand chromosomal evolution in Crotalaria. The results reveals that all species presented 2n = 2x = 16 with symmetrical karyotypes, and slight differences in the chromosome morphology. A secondary constriction was identified at short arm of the pair 1. The 45S rDNA was mapped in the secondary constriction and adjacent heterochromatin (NOR-heterochromatin) and a minor site was identified in C. ochroleuca. The 5S rDNA was mapped linked to 45S rDNA at chromosome 1 short arm in all species. Additional sites for 5S rDNA were identified in C. pallida, C. striata and C. mucronata. Heterochromatin blocks around the centromeres are not CMA+ neither DAPI+. The karyotypes of the subsection Macrostachyae are characterized by an inversion at chromosome pair one in relation to previous specialized floral species analyzed. Additional sites of 45S and 5S rDNA were assumed to be a result of transposition events by different ways. The results suggest heterochromatin differentiation and the position of ribosomal genes indicates chromosomal rearrangements during evolution. Karyotype characteristics corroborate the morphological infrageneric classification.

Keywords

Crotalaria Karyotype Ribosomal variability Transposition 45S rDNA 5S rDNA 

Notes

Acknowledgments

We are thankful to Coordenação de Aperfeiçoamento de Pessoal de Nível Supeior (CAPES) and Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) for supporting AGM. MM was a PRODOC/CAPES fellowship. Research was also supported by Fundação de Apoio à Pesquisa do Estado de São Paulo (FAPESP Proc. 98/01170-5). We are thankful to Gustavo C.S. Kuhn for critical reading of the manuscript.

References

  1. Ahmed B, Al-Howiriny TA, Mossa JS (2006) Crotalic and emarginellic acids: two triterpenes from Crotalaria emarginella and anti-inflammatory and anti-hepatotoxic activity of crotalic acid. Phytochemistry 67:956–964PubMedCrossRefGoogle Scholar
  2. Ali HB, Meister A, Schubert I (2000) DNA content, rDNA loci, and DAPI bands reflect the phylogenetic distance between Lathyrus species. Genome 43:1027–1032PubMedGoogle Scholar
  3. Almada RD, Daviña JR, Seijo JG (2006) Karyotype analysis and chromosome evolution in southernmost South American species of Crotalaria (Leguminosae). Bot J Linn Soc 150:329–341CrossRefGoogle Scholar
  4. Altinkut A, Kotseruba V, Kirzhner VM, Nevo E, Raskina O, Belyayev A (2006) Ac-like transposons in populations of wild diploid Triticeae species: comparative analysis of chromosomal distribution. Chromosome Res 14:307–317PubMedCrossRefGoogle Scholar
  5. Barros e Silva AE, Guerra M (2010) The meaning of DAPI bands observed after C-banding and FISH procedures. Biotech Histochem 85:115–125PubMedCrossRefGoogle Scholar
  6. Bisby FA, Polhill RM (1973) The role of taximetrics in angiosperm taxonomy. II. Parallel taximetrics and orthodox studies in Crotalaria L. New Phytol 72:727–742CrossRefGoogle Scholar
  7. Boulter D, Derbyshire E, Frahm-Leliveld JA, Polhill RM (1970) Observations on the cytology and seed-proteins of various African species of Crotalaria L. (Leguminosae). New Phytol 69:117–131CrossRefGoogle Scholar
  8. Cabral JS, Felix LP, Guerra M (2006) Heterochromatin diversity and its co-localization with 5S and 45S rDNA sites in chromosomes of four Maxillaria species (Orchidaceae). Genet Mol Biol 29:659–664CrossRefGoogle Scholar
  9. Castilho A, Heslop-Harrison JS (1995) Physical mapping of 5S and 18S–25S rDNA and repetitive DNA sequences in Aegilops umbellulata. Genome 38:91–96PubMedCrossRefGoogle Scholar
  10. Cuco SM, Mondin M, Vieira MLC, Aguiar-Perecin MLR (2003) Técnicas para obtenção de preparações citológicas com alta frequência de metáfases mitóticas em plantas: Passiflora (Passifloraceae) e Crotalaria (Leguminosae). Acta Bot Bras 17:363–370CrossRefGoogle Scholar
  11. Cuco SM, Vieira MLC, Mondin M, Aguiar-Perecin MLR (2005) Comparative karyotype analysis of three Passiflora L. species and cytogenetic characterization of somatic hybrids. Caryologia 58:220–228Google Scholar
  12. Datson PM, Murray BG (2006) Ribosomal DNA locus evolution in Nemesia: transposition rather than structural rearrangement as the key mechanism? Chromosome Res 14:845–857PubMedCrossRefGoogle Scholar
  13. Devos KM, Brown JK, Bennetzen JL (2002) Genome size reduction through illegitimate recombination counteracts genome expansion in Arabidopsis. Genome Res 12:1075–1079PubMedCrossRefGoogle Scholar
  14. Dinardo-Miranda LL, Gil MA (2005) Effect of crop rotation with Crotalaria juncea on sugar cane yield, treated or not with nematicides at planting. Nematol Bras 29:63–66 [Portuguese]Google Scholar
  15. Flores AS (2004) Taxonomia, números cromossômicos e química de espécies de Crotalaria L. (Leguminosae-Papilolionoideae) no Brasil. PhD. thesis, Universidade Estadual de Campinas, BrazilGoogle Scholar
  16. Flores AS, Corrêa AM, Forni-Martins ER, Tozzi AMGA (2006) Chromosome numbers in Brazilian species of Crotalaria L. (Leguminosae-Papilioideae) and their taxonomic significance. Bot J Linn Soc 151:271–277CrossRefGoogle Scholar
  17. Fregonezi JN, Fernandes T, Torezan JMD, Vieira AOS, Vanzela ALL (2006) Karyotype differentiation of four Cestrum species (Solanaceae) based on the physical mapping of repetitive DNA. Genet Mol Biol 29:659–664CrossRefGoogle Scholar
  18. Fregonezi JN, Vilas-Boas LA, Fungaro MHP, Gaeta ML, Vanzela ALL (2007) Distribution of a Ty3/gypsy-like retroelement on the A and B-chromosomes of Cestrum strigilatum Ruiz and Pav. and Cestrum intermedium Sendtn. (Solanaceae). Genet Mol Biol 30:599–604CrossRefGoogle Scholar
  19. Germani G, Plenchette C (2004) Potential of Crotalaria species as green manure crops for the management of pathogenic nematodes and beneficial mycorrhizal fungi. Plant Soil 266:333–342CrossRefGoogle Scholar
  20. Gupta PK (1976) Nuclear DNA, nuclear area and nuclear dry mass in thirteen species of Crotalaria (Angiospermae, Leguminosae). Chromosoma 54:155–164CrossRefGoogle Scholar
  21. Gupta R, Gupta PK (1978) Karyotype studies in the genus Crotalaria Linn. Cytologia 43:357–369CrossRefGoogle Scholar
  22. Hanelt P, Institute of Plant Genetics and Crop Plant Research (eds) (2001) Mansfeld’s Encyclopedia of Agricultural and Horticultural Crops 1–6, 3716 pGoogle Scholar
  23. Heslop-Harrison JS, Schwarzacher T (2011) Organisation of the plant genome in chromosomes. Plant J doi: 10.1111/j.1365-313X.2011.04544.x
  24. Kotseruba V, Gernand D, Meister A, Houben A (2003) Uniparental loss of ribosomal DNA in the allotetraploid grass Zingeria trichopoda (2n = 8). Genome 46:156–163PubMedCrossRefGoogle Scholar
  25. Kotseruba V, Pistrick K, Blattner FR, Kumke K, Weiss O, Rutten T, Fuchs J, Endo T, Nasuda S, Ghukasyan A, Houben A (2010) The evolution of the hexaploid grass Zingeria kochii (Mez) Tzvel. (2n = 12) was accompanied by complex hybridization and uniparental loss of ribosomal DNA. Mol Phylogenet Evol 56:146–155PubMedCrossRefGoogle Scholar
  26. Kuhn GCS, Sene FM, Moreira-Filho O, Schwarzacher T, Heslop-Harrison JS (2008) Sequence analysis, chromosomal distribution and long-range organization show that rapid turnover of new and old pBuM satellite DNA repeats leads to different patterns of variation in seven species of the Drosophila buzzatii cluster. Chromosome Res 16:307–324PubMedCrossRefGoogle Scholar
  27. Leitch IJ, Heslop-Harrison JS (1992) Physical mapping of the 18S–5.8S–26S rRNA genes in barley by in situ hybridization. Genome 35:1013–1018CrossRefGoogle Scholar
  28. Lim KY, Matyásek R, Lichtenstein CP, Leith AR (2000) Molecular cytogenetics analyses and phylogenetic studies in the Nicotiana section Tomentosae. Chromosoma 109:245–258PubMedCrossRefGoogle Scholar
  29. Lysak MA, Koch MA, Beaulieu JM, Meister A, Leitch IJ (2009) The dynamic ups and downs of genome size evolution in Brassicaceae. Mol Biol Evol 26:85–98PubMedCrossRefGoogle Scholar
  30. Maluszynska J, Heslop-Harrison JS (1993) Molecular cytogenetics of the genus Arabidopsis: In situ localization of rDNA sites, chromosome number and diversity in centromeric heterochromatin. Ann Bot 71:479–484CrossRefGoogle Scholar
  31. Mazzella C, Rodrígues M, Vaio M, Gaiero P, López-Carro B, Santiñaque FF, Folle GA, Guerra M (2010) Karyological features of Achyrocline (Asteraceae, Gnaphalieae): stable karyotypes, low DNA content variation and linkage of rRNA genes. Cytogenet Genome Res 128:169–176PubMedCrossRefGoogle Scholar
  32. McMullen MD, Hunter B, Phillips RL, Rubenstein I (1986) The structure of the maize ribosomal DNA spacer region. Nucleic Acids Res 14:4953–4968PubMedCrossRefGoogle Scholar
  33. Mondin M (2003) Estudo da evolução cariotípica do gênero Crotalaria L. (Leguminosae-Papilionoideae) com o emprego de técnicas de bandamento cromossômico e hibridação in situ fluorescente (FISH). PhD. thesis, ESALQ, Universidade de São Paulo, BrazilGoogle Scholar
  34. Mondin M, Aguiar-Perecin MLR, Morales AG, Andrade LM, Molina SCM (2007a) Citogenética do gênero Crotalaria (Leguminosae-Papilionoideae): da clássica a molecular. Memórias do Simposio Latinoamericano de Citogenética y Evolución, pp 189–195Google Scholar
  35. Mondin M, Santos-Serejo JA, Aguiar-Perecin MLR (2007b) Karyotype characterization of Crotalaria juncea L. (Leguminosae-Papilionoideae) by chromosome banding and in situ hybridization of rDNA 45s and 5s. Genet Mol Biol 30:65–72CrossRefGoogle Scholar
  36. Morris JB, Kays SE (2005) Total dietary fiber variability in a cross section of Crotalaria juncea genetic resources. Crop Sci 45:1826–1829CrossRefGoogle Scholar
  37. Oliveira ALPC, Aguiar-Perecin MLR (1999) Karyotype evolution in the genus Crotalaria L. Cytologia 64:164–174CrossRefGoogle Scholar
  38. Palomino G, Vázquez R (1991) Cytogenetic Studies in Mexican Populations of Species of Crotalaria L. (Leguminosae-Papilionideae). Cytologia 56:343–351CrossRefGoogle Scholar
  39. Pereira GJG, Molina SMG, Lea PJ, Azevedo RA (2002) Activity of antioxidant enzymes in response to cadmium in Crotalaria juncea. Plant Soil 239:123–132CrossRefGoogle Scholar
  40. Polhill RM (1982) Crotalaria in Africa and Madagascar. A.A. Balkema, RotterdamGoogle Scholar
  41. Raina SN, Verma RC (1979) Cytogenetics of Crotalaria. I. Mitotic complements in twenty species of Crotalaria L. Cytologia 44:365–375CrossRefGoogle Scholar
  42. Raina SN, Mukai Y, Kawaguchi K, Goel S, Jain A (2001) Physical mapping of 18S–5.8S–26S and 5S ribosomal RNA gene families in three important vetches (Vicia species) and their allied taxa constituting three species complexes. Theor Appl Genet 103:839–845CrossRefGoogle Scholar
  43. Raskina O, Belyayev A, Nevo E (2004a) Activity of the En/Spm-like transposons in meiosis as a base for chromosome repatterning in a small, isolated, peripheral population of Aegilops speltoides Tausch. Chromosome Res 12:153–161PubMedCrossRefGoogle Scholar
  44. Raskina O, Belyayev A, Nevo E (2004b) Quantum speciation in Aegilops: molecular cytogenetic evidence from rDNA cluster variability in natural populations. Proc Natl Acad Sci USA 101:14818–14823PubMedCrossRefGoogle Scholar
  45. Ruas CF, Vanzela ALL, Santos MO, Fregonezi JN, Ruas PM, Matzenbacher NI, Aguiar-Perecin MLR (2005) Chromosomal organization and phylogenetic relationships in Hypochaeris species (Asteraceae) from Brazil. Genet Mol Biol 28:129–139CrossRefGoogle Scholar
  46. Schubert I (2007) Chromosome evolution. Curr Opin Plant Biol 10:109–115PubMedCrossRefGoogle Scholar
  47. Schubert I, Wobus U (1985) In situ hybridization confirms jumping nucleolus organizing regions in Allium. Chromosoma 92:143–148CrossRefGoogle Scholar
  48. Schwarzacher T, Heslop-Harrison JS (2000) Practical in situ hybridization. Bios, OxfordGoogle Scholar
  49. Seong HJ, Koh SB, Kim TS, Park HW, Park CG, Kim JS, Kang MH (2008) Functional food for preventing and treating large intestinal cancer containing Crotalaria sessiflora extract. Derwent World Patent Index: Primary Accession Number: 2008-A43273, Patent Number: KR2007070316-AGoogle Scholar
  50. Shishido R, Sano Y, Fukui K (2000) Ribosomal DNAs: an exception to the conservation of gene order in rice genomes. Mol General Genet 263:586–591CrossRefGoogle Scholar
  51. Smarda P, Bureš P, Horová L, Foggi B, Rossi G (2008) Genome size and GC content evolution of Festuca: ancestral expansion and subsequent reduction. Ann Bot 101:421–433PubMedCrossRefGoogle Scholar
  52. Taketa S, Harrison GE, Heslop-Harrison JS (1999) Comparative physical mapping of the 5S and 18S–25S rDNA in nine wild Hordeum species and cytotypes. Theor Appl Genet 98:1–9CrossRefGoogle Scholar
  53. Taketa S, Ando H, Takeda K, Harrison GE, Heslop-Harrison JS (2000) The distribution, organization and evolution of two abundant and widespread repetitive DNA sequences in the genus Hordeum. Theor Appl Genet 100:169–176CrossRefGoogle Scholar
  54. Tapia-Pastrana F, Gallegos-Pacheco E, Teodoro-Pardo C, Mercado-Ruaro P (2005) New cytogenetic information of two mexican populations of Crotalaria incana L. (Leguminosae-Papilioideae). Cytologia 70:207–212CrossRefGoogle Scholar
  55. Verma RC, Raina SN (1983) Cytogenetics of Crotalaria. VIII. Male meiosis in 26 species. Cytologia 48:719–733CrossRefGoogle Scholar
  56. Verma RC, Kesavacharyulu K, Raina SN (1984) Cytogenetics of Crotalaria. IX. Mitotic complements in 19 species. Cytologia 49:157–169CrossRefGoogle Scholar
  57. Windler D (1974) Chromosome number for native North American unifoliate species of Crotalaria (Leguminosae). Brittonia 26:172–176CrossRefGoogle Scholar
  58. Winterfeld G, Röser M (2007) Disposition of ribosomal DNAs in the chromosomes of perennial oats (Poaceae: Aveneae). Bot J Linn Soc 155:193–210CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • A. G. Morales
    • 1
  • M. L. R. Aguiar-Perecin
    • 1
  • M. Mondin
    • 1
  1. 1.Departamento de Genética, Escola Superior de Agricultura “Luiz de Queiroz”Universidade de São PauloPiracicabaBrazil

Personalised recommendations