Genetic Resources and Crop Evolution

, Volume 59, Issue 2, pp 219–229 | Cite as

Genetic basis of long shelf life and variability into Penjar tomato

  • J. Casals
  • L. Pascual
  • J. Cañizares
  • J. Cebolla-Cornejo
  • F. CasañasEmail author
  • F. Nuez
Research Article


Penjar tomato is a varietal type cultivated in northeast Spain that characteristically has a long shelf life, small fruit, and wide morphological variability among cultivars. To determine the genetic basis for the long shelf life in the Penjar varietal type and to describe the genetic background and agromorphologic characteristics of the group, we studied 27 Penjar accessions representative of the entire range of variation in traits related to agronomic behavior, fruit morphology, and sensory quality. We found that the long shelf life of Penjar (mean: 126.8 days) is due to the ripening mutant alcobaça (alc), and the molecular basis of this mutation is the replacement of thymine by adenine in position 317 of the coding sequence of the NAC.NOR gene; thus, alcobaça (alc) is an allele of non-ripening (nor). The amplified fragment length polymorphism (AFLP) study found 18.07% polymorphic loci within the Penjar varietal type, which is higher than usual in landraces. The variation in agronomic and morphologic traits between accessions was also very high; thus, the heterogeneity of the Penjar group probably results from the introduction of the allele alc in distinct landraces. Our results also show that in germplasm containing the alc mutation shelf life is negatively correlated with fruit size (weight, width, length, and number of locules); thus, the predominance of small fruit within the varietal type is probably the result of this trait being dragged along in the selection for long shelf life.


Alcobaça Penjar tomato Ripening mutants Shelf life Tomato landrace 



This work was supported by grants from the Conselleria de Agricultura, Pesca y Alimentació de la Comunidad Valenciana, the Fundación de la Comunidad Valenciana para la Investigación Agroalimentaria (AGROALIMED) and from the Departament d’Agricultura, Alimentació i Acció Rural (DAR) de la Generalitat de Catalunya. We thank Dr. Ll. Bosch for his collaboration in this study.


  1. Alba R, Payton P, Feiz ZJ, McQuinn R, Debbie P, Martin GB, Tanksley SD, Giovannoni JJ (2005) Transcriptome and selected metabolite analyses reveal multiple points of ethylene control during tomato fruit development. Plant Cell 17(1):2954–2965PubMedCrossRefGoogle Scholar
  2. Almeida JLF (1961) Um novo aspecto de melhoramento do tomate. Agricultura 10:43–44Google Scholar
  3. Atanassova B, Georgiev H (2007) Expression of heterosis by hybridization. In: Razdan MK, Mattoo AK (eds) Genetic improvement of solanaceous crops. Volume 2: tomato. Science Publishers, New Hampshire, pp 113–152Google Scholar
  4. Brady CJ, MacAlpine G, McGlasson WB, Veda Y (1982) Polygalacturonase in tomato fruits and the induction of ripening. Aust J Plant Physiol 9(2):171–178CrossRefGoogle Scholar
  5. Buescher RW, Sistrunk WA, Tigchelaar EC, Ng TJ (1976) Softening, pectolytic activity, and storage-life of rin and nor tomato hybrids. HortScience 11:603–604Google Scholar
  6. Buntjer JB (2001) PhylTools (phylogenetic computer tools) version 1.32. Laboratory of Plant Breeding, Wageningen Agriculture University, NetherlandsGoogle Scholar
  7. Chetelat RT (2002) Revised list of monogenic stocks. Tomato Genet Coop Rep 52:41–62Google Scholar
  8. Dellaporta SJ, Wood J, Hicks JB (1983) A plant DNA mini preparation: version II. Plant Mol Biol Reporter 1:19–21CrossRefGoogle Scholar
  9. Dice LR (1945) Measures of the amount of ecologic association between species. Ecology 26:297–302CrossRefGoogle Scholar
  10. Garg N, Cheema DS, Pathak D (2008) Heterosis breeding in tomato involving rin, nor and alc alleles: a review of literature. Adv Hortic Sci 22(1):54–62Google Scholar
  11. Giovannoni JJ (2004) Genetic regulation of fruit development and ripening. Plant Cell 16:S170–S180PubMedCrossRefGoogle Scholar
  12. Giovannoni JJ, Yen H, Shelton B, Miller S, Vrebalov J, Kannan P, Tieman D, Hackett R, Grierson D, Klee H (1999) Genetic mapping of ripening and ethylene-related loci in tomato. Theor Appl Gen 98(6–7):1005–1013CrossRefGoogle Scholar
  13. Giovannoni JJ, Tanksley SD, Vrebalov J, Noensie E (2004) NOR gene for use in manipulation of fruit quality and ethylene response. US Patent No. 5,234,834 issued 13 July 2004Google Scholar
  14. IPGRI (1996) Descriptors for tomato (Lycopersicon spp.). International Plant Genetic Resources Institute, RomeGoogle Scholar
  15. Kopeliovitch E, Mizrahi Y, Rabinowitch HD, Kedar N (1982) Effect of the fruit-ripening mutant-genes rin and nor on the flavor of tomato fruit. J Am Soc Hortic Sci 107:361–364Google Scholar
  16. Kosma DK, Parsons EP, Isaacson T, Lü S, Rose JKC, Jenks MA (2010) Fruit cuticle lipid composition during development in tomato ripening mutants. Physiol Plant 139:107–117PubMedCrossRefGoogle Scholar
  17. Leal NR, Tabim MH (1974) Testes de conservaçâo natural pôs-colheita, além dos 300 dias, de frutos de alguns cultivares de tomateiro (Lycopersicon esculentum) e híbridos destes com “alcobaça”. Rev Ceres 21(116):310–328Google Scholar
  18. Lippman ZB, Cohen O, Alvarez JP, Abu-Abied M, Pekker I, Paran I, Eshed Y, Zamir D (2008) The making of a compound inflorescence in tomato and related nightshades. PLoS Biol 6(11):2424–2435CrossRefGoogle Scholar
  19. Lobo M, Bassett MJ, Hannah LC (1984) Inheritance and characterization of the fruit ripening mutation in alcobaca tomato. J Am Soc Hortic Sci 109:741–745Google Scholar
  20. McGlasson WB, Last JH, Shaw KJ, Meldrum SK (1987) Influence of the non-ripening mutants rin and nor on the aroma of tomato fruit. HortScience 22:632–634Google Scholar
  21. Moore S, Vrebalov J, Payton P, Giovannoni J (2002) Use of genomics tools to isolate key ripening genes and analyse fruit maturation in tomato. J Exp Bot 53(377):2023–2030PubMedCrossRefGoogle Scholar
  22. Mueller LA, Solow TH, Taylor N, Skwarecki B, Buels R, Binns J, Lin C, Wright MH, Ahrens R, Wang Y, Herbst EV, Keyder ER, Menda N, Zamir D, Tanksley S (2005) The SOL genomics network. A comparative resource for Solanaceae biology and beyond. Plant Physiol 138:1310–1317PubMedCrossRefGoogle Scholar
  23. Mutschler MA (1984a) Inheritance and linkage of the alcobaca ripening mutant in tomato. J Am Soc Hortic Sci 109:500–503Google Scholar
  24. Mutschler MA (1984b) Ripening and storage characteristics of the alcobaca mutant in tomato. J Am Soc Hortic Sci 109:504–507Google Scholar
  25. Mutschler M, Guttieri M, Kinzer S, Grierson D, Tucker G (1988) Changes in ripening-related processes in tomato conditioned by the alc mutant. Theor Appl Gen 76:285–292CrossRefGoogle Scholar
  26. Mutschler MA, Wolfe DW, Cobb ED, Yourstone KS (1992) Tomato fruit-quality and shelf-life in hybrids heterozygous for the alc ripening mutant. HortScience 27:352–355Google Scholar
  27. Ng TJ, Tigchelaar EC (1977) Action of non-ripening (nor) mutant on fruit ripening of tomato. J Am Soc Hortic Sci 102:504–509Google Scholar
  28. Nuez F (1996) Catálogo de semillas de tomate. Instituto de Investigación y Tecnología Agraria y Alimentaria, MadridGoogle Scholar
  29. Paran I, Van der Knaap E (2007) Genetic and molecular regulation of fruit and plant domestication traits in tomato and pepper. J Exo Bot 58:3841–3852CrossRefGoogle Scholar
  30. Park YH, West MAL, St Clair DA (2004) Evaluation of AFLPs for germplasm fingerprinting and assessment of genetic diversity in cultivars of tomato (Lycopersicon esculentum L.). Genome 47:510–518PubMedCrossRefGoogle Scholar
  31. Rick CM, Butler L (1956) Cytogenetics of the tomato. Adv Genet 8:267–382CrossRefGoogle Scholar
  32. Robinson RW, Tomes ML (1968) Ripening inhibitor: a gene with multiple effects on ripening. Tomato Genet Coop Rep 18:36–37Google Scholar
  33. Saladie M, Matas AJ, Isaacson T, Jenks MA, Goodwin SM, Niklas KJ, Ren XL, Labavitch JM, Shackel KA, Fernie AR, Lytovchenko A, O’Neill MA, Watkins CB, Rose JKC (2007) A re-evaluation of the key factors that influence tomato fruit softening and integrity. Plant Physiol 144:1012–1028PubMedCrossRefGoogle Scholar
  34. SAS Institute (1999) SAS/STAT® user’s guide, version 8. SAS Institute Inc, Cary, NCGoogle Scholar
  35. Schuelter AR, Casaliv WD, Cruz CD, Finger FL, Amaral AT, Shimoya A (2001) Biometrical analysis of a mutant that increases shelf-life of tomato fruits. Crop Breed Appl Biotechnol 1:44–53Google Scholar
  36. Sneath PHA, Sokal RR (1973) Numerical taxonomy. W.H. Freeman, San FranciscoGoogle Scholar
  37. SPSS for Windows (1997) Version 8.0.0. SPSS Inc, ChicagoGoogle Scholar
  38. Suliman-Pollatschek S, Kashkush K, Shats H, Hillel J, Lavi U (2002) Generation and mapping of AFLP, SSRS and SNPs in Lycopersicon esculentum. Cell Mol Bio Lett 7(2A):583–597Google Scholar
  39. Tam SM, Mhiri C, Vogelaar A, Kerkveld M, Pearce SR, Grandbastien MA (2005) Comparative analyses of genetic diversities within tomato and pepper collections detected by retrotransposon-based SSAP, AFLP and SSR. Theor Appl Genet 110:819–831PubMedCrossRefGoogle Scholar
  40. Thompson AJ, Tor M, Barry CS, Vrebalov J, Orfila C, Jarvis MC, Giovannoni JJ, Grierson D, Seymour GB (1999) Molecular and genetic characterization of a novel pleiotropic tomato-ripening mutant. Plant Physiol 120:383–389PubMedCrossRefGoogle Scholar
  41. Tigchelaar ECM, Tomes ML, Kerr EA, Barman RJ (1973) A new fruit ripening mutant, non-ripening (nor). Tomato Genet Coop Rep 23:33Google Scholar
  42. Vrebalov J, Ruezinsky D, Padmanabhan V, White R, Medrano D, Drake R, Schuch W, Giovannoni J (2002) A MADS-box gene necessary for fruit ripening at the tomato ripening-inhibitor (rin) locus. Science 296:343–346PubMedCrossRefGoogle Scholar
  43. Williams CE, St Clair DA (1993) Phenetic relationships and levels of variability detected by restriction-fragment-length-polymorphism and random amplified polymorphic DNA analysis of cultivated and wild accessions of Lycopersicon esculentum. Genome 36:619–630PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • J. Casals
    • 1
  • L. Pascual
    • 2
  • J. Cañizares
    • 2
  • J. Cebolla-Cornejo
    • 2
  • F. Casañas
    • 1
    Email author
  • F. Nuez
    • 2
  1. 1.Departament d’Enginyeria Agroalimentària i BiotecnologiaUniversitat Politècnica de CatalunyaCastelldefelsSpain
  2. 2.Instituto Universitario de Conservación y Mejora de la Agrodiversidad Valenciana (COMAV), Universidad Politécnica de ValenciaValenciaSpain

Personalised recommendations