Genetic Resources and Crop Evolution

, Volume 59, Issue 2, pp 171–178 | Cite as

Extending the range of an ancient crop, Salvia hispanica L.—a new ω3 source

  • Watchareewan JamboonsriEmail author
  • Timothy D. Phillips
  • Robert L. Geneve
  • Joseph P. Cahill
  • David F. Hildebrand
Research Article


Chia, Salvia hispanica L., was well developed into a cultivated crop and an important component of Mesoamerican cultures and nutrition. Early Mesoamerican breeders produced lines with well developed agronomic characteristics including good, uniform seed yield and retention. Seed retention in particular is disadvantageous for survival in the wild. Maize, beans and squash were developed into important crops concomitant with chia in Mesoamerica but unlike these other crops lack of photoperiodic variability in floral induction limited the spread of chia cultivation into North America. There has been renewed interest in chia as an excellent source of ω3 fatty acids and dietary fiber for healthy diets. Such highly unsaturated oils also are useful starting materials for many renewable chemicals. Further we find chia grows very well in Midwestern and Eastern USA but flowers too late in the season for seeds to mature before killing frosts. We set out to develop the genetic diversity in floral induction to provide germplasm for production in the US and other temperate areas of the world. We demonstrate that new early flowering lines are able to flower under a photoperiod of 15 h under greenhouse conditions. In field conditions, some selected new lines flowered at a photoperiod of 14 h and 41 min during the 2009 growing season in Kentucky and can produce seeds in a range of environments in temperate areas.


Chia Fiber Flowering Mutagenesis Omega-3 fatty acids Photoperiod Renewable resources Salba Salvia hispanica L. 



This work was partially supported by the New Crop Opportunities Center at the University of Kentucky through a USDA Special Grant, the Kentucky Small Grain Growers Assoc., the KTRDC and the Kentucky Agricultural Experiment Station. The excellent technical assistance of Scott Serdoz and Wassana Kethom greatly facilitated this work. Chad Lee provided helpful advice.

Supplementary material

10722_2011_9673_MOESM1_ESM.doc (472 kb)
Supplementary material 1 (DOC 472 kb)


  1. Abdurakhmonov IY, Kushanov FN, Djaniqulov F, Buriev ZT, Pepper AE, Fayzieva N, Mavlonov GT, Saha S, Jenkins JN, Abdukarimov A (2007) The role of induced mutation in conversion of photoperiod dependence in cotton. J Hered 98:258–266PubMedCrossRefGoogle Scholar
  2. Acuña R (1986) Relaciones geográficas del siglo XVI. Serie antropológica. Universidad Nacional Autónoma de México. Instituto de Investigaciones Antropológicas, México CityGoogle Scholar
  3. Armitage AM, Laushman JM (1989) Photoperiodic control of flowering of Salvia leucantha. J Am Soc Hortic Sci 114:755–758Google Scholar
  4. Ayerza R (1995) Oil content and fatty acid composition of chia (Salvia hispanica L.) from five northwestern locations in Argentina. J Am Oil Chem Soc 72:1079–1081CrossRefGoogle Scholar
  5. Ayerza R, Coates W (2005) The renaissance of Chia. In: Chia: rediscovering a forgotten crop of the Aztecs. The University of Arizona Press, TucsonGoogle Scholar
  6. Berdan F, Anawalt P (1996) Codex Mendoza. University of California Press, Ltd., London (Originally composed ca. 1541–1542)Google Scholar
  7. Bolaños D (1974) La Medica Idigena Pre-Colombina De Nicaragua. Editorial La Imprenta, EsteliGoogle Scholar
  8. Buckler ES, Holland JB, Bradbury PJ, Acharya CB, Brown PJ, Browne C, Ersoz E, Flint-Garcia S, Garcia A, Glaubitz JC, Goodman MM, Harjes C, Guill K, Kroon DE, Larsson S, Lepak NK, Li H, Mitchell SE, Pressoir G, Peiffer JA, Rosas MO, Rocheford TR, Romay MC, Romero S, Salvo S, Villeda HS, Sofia da Silva H, Sun Q, Tian F, Upadyayula N, Ware D, Yates H, Yu J, Zhang Z, Kresovich S, McMullen MD (2009) The genetic architecture of maize flowering time. Science 325:714–718PubMedCrossRefGoogle Scholar
  9. Cahill JP (2003) Ethnobotany of Chia, Salvia hispanica L. (Lamiaceae). Econ Bot 57:604–618CrossRefGoogle Scholar
  10. Cahill JP (2004) Genetic diversity among varieties of Chia (Salvia hispanica L.). Genet Resour Crop Evol 51:773–781CrossRefGoogle Scholar
  11. Cahill JP (2005) Human selection and domestication of chia (Salvia hispanica L.). J Ethnobiol 25:155–174CrossRefGoogle Scholar
  12. Cahill JP, Ehdaie B (2005) Variation and heritability of seed mass in chia (Salvia hispanica L.). Genet Resour Crop Evol 52:201–207CrossRefGoogle Scholar
  13. Duran FD (1994) The history of the Indies of New Spain (translated by Doris Heyden. Originally written 1581). University of Oklahoma Press, NormanGoogle Scholar
  14. Durand-Forest J (1980) Matricula de Tributos, Museo de Antropologia, Mexico (Col. 35–52). Akademische Druck- und Verlagsanstalt, Graz (Originally composed sixteenth century)Google Scholar
  15. Epling C (1940) A revision of Salvia, subgenus Calosphace. University of California Press, BerkeleyGoogle Scholar
  16. Estilai A, Hashemi A, Truman K (1990) Chromosome number and meiotic behavior of cultivated chia, Salvia hispanica (Lamiaceae). Hort Sci 25:1646–1647Google Scholar
  17. Fornara F, Panigrahi KCS, Gissot L, Sauerbrunn N, Ruhl M, Jarillo JA, Coupland G (2009) Arabidopsis DOF transcription factors act redundantly to reduce CONSTANS expression and are essential for a photoperiodic flowering response. Develop Cell 17:75–86CrossRefGoogle Scholar
  18. Gentry HS, Mittleman M, McCrohan PR (1990) Introduction of Chia and gum tragacanth in the U.S. In: Simon JJAJE (ed) Advances in new crops. Timber Press, Portland, OR, pp 252–256Google Scholar
  19. Harvey H (1991) Land politics in the valley of Mexico: a two thousand year perspective. University of New Mexico Press, AlbuquerqueGoogle Scholar
  20. Hernández Gómez JA, Miranda Colín S (2008) Caracterización Morfológica de Chía (Salvia hispanica). Rev Fitotec Mex 31:105–113Google Scholar
  21. Hou CJ, Yang CH (2009) Functional analysis of FT and TFL1 orthologs from orchid (Oncidium Gower Ramsey) that regulate the vegetative to reproductive transition. Plant Cell Physiol 50:1544–1557PubMedCrossRefGoogle Scholar
  22. Ishikawa R, Shinomura T, Takano M, Shimamoto K (2009) Phytochrome dependent quantitative control of Hd3a transcription is the basis of the night break effect in rice flowering. Gene Genet Syst 84:179–184CrossRefGoogle Scholar
  23. Jansen P, Lemmens R, Oyen L, Siemonsma J, Stavast F, van Valkenburg J (1991) Plant resources of South-East Asia basic list of species and commodity grouping Pudoc, Wageningen, NetherlandsGoogle Scholar
  24. Koche DK, Choudhary AD (2008) Selection of early flowering, high yielding and CLS resistant mutant lines from mutagenized Vigna radiata (L.) Wilczek population. Res Crop 9:666–669Google Scholar
  25. Komiya R, Yokoi S, Shimamoto K (2009) A gene network for long-day flowering activates RFT1 encoding a mobile flowering signal in rice. Development 136:3443–3450PubMedCrossRefGoogle Scholar
  26. Kondo H, Shiraya T, Wada KC, Takeno K (2010) Induction of flowering by DNA demethylation in Perilla frutescens and Silene armeria: Heritability of 5-azacytidine-induced effects and alteration of the DNA methylation state by photoperiodic conditions. Plant Sci 178:321–326CrossRefGoogle Scholar
  27. Léon-Portilla M (1996) El destino de la palabra. De la oralidad y los códices mesoamericanos a la escritura alfabética El Colegio Nacional. Fondo de Cultura Económica, Mexico CityGoogle Scholar
  28. Mattson NS, Erwin JE (2005) The impact of photoperiod and irradiance on flowering of several herbaceous ornamentals. Sci Hortic 104:275–292CrossRefGoogle Scholar
  29. Miranda CS (1978) Evolución de cultivares nativos de México. Ciencia y Desarrollo 3:130–131Google Scholar
  30. Molina FAD (1970) Vocabulario en Lengua Castellana y Mexicana y Mexicana y Castellana. Editorial Porrua, Mexico, DFGoogle Scholar
  31. Perm H, Carrasco P (1974) Matricula de Huexotzinco. Akademische Druck- und Verlagsanstalt, Graz (Originally written 1560)Google Scholar
  32. Perry L, Metzger J (1980) Medicinal plants of East and Southeast Asia: attributed properties and uses. The MIT Press, CambridgeGoogle Scholar
  33. Rojas-Rabiela T (1988) Las Siembras de Ayer, La Agricultura Indigena del Siglo XVI. Secretaria de Educacion Publica, Mexico, DFGoogle Scholar
  34. Ryu CH, Lee S, Cho LH, Kim SL, Lee YS, Choi SC, Jeong HJ, Yi J, Park SJ, Han CD, An G (2009) OsMADS50 and OsMADS56 function antagonistically in regulating long day (LD)-dependent flowering in rice. Plant Cell Environ 32:1412–1427PubMedCrossRefGoogle Scholar
  35. Sandoval AZ (1989) Amarantos y chias. Un studio ethnohistórico. Escuela Nacional de Antropología e Historia, México, DFGoogle Scholar
  36. Smith CW, Cothren J (1999) Cotton: origin, history, technology, and production. Wiley, New YorkGoogle Scholar
  37. Stangeland B, Rosenhave EM, Winge P, Berg A, Amundsen SS, Karabeg M, Mandal A, Bones AM, Grini PE, Aalen RB (2009) AtMBD8 is involved in control of flowering time in the C24 ecotype of Arabidopsis thaliana. Physiol Plant 136:110–126PubMedCrossRefGoogle Scholar
  38. Strasser B, Alvarez MJ, Califano A, Cerdan PD (2009) A complementary role for ELF3 and TFL1 in the regulation of flowering time by ambient temperature. Plant J 58: 629–640PubMedCrossRefGoogle Scholar
  39. Thurling N, Depittayanan V (1992) EMS Induction of early flowering mutants in spring rape (Brassica napus). Plant Breed 108:177–184CrossRefGoogle Scholar
  40. Turck F, Fornara F, Coupland G (2008) Regulation and identity of florigen: flowering locus T moves center stage. Annual Rev Plant Bio 59:573–594CrossRefGoogle Scholar
  41. Westengen OT, Huaman ZMH (2005) Genetic diversity and geographic pattern in early South American cotton domestication. Theor Appl Genet 110:392–402PubMedCrossRefGoogle Scholar
  42. Yoshida R, Fekih R, Fujiwara S, Oda A, Miyata K, Tomozoe Y, Nakagawa M, Niinuma K, Hayashi K, Ezura H, Coupland G, Mizoguchi T (2009) Possible role of early flowering 3 (ELF3) in clock-dependent floral regulation by short vegetative phase (SVP) in Arabidopsis thaliana. New Phytol 182:838–850PubMedCrossRefGoogle Scholar
  43. Zanin G, Erwin JE (2006) Photoperiod and irradiance effects on Salvia elegans, S. gregii, and S. patens flowering, height and branching. Acta Horticult 723:367–373Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Watchareewan Jamboonsri
    • 1
    • 4
    Email author
  • Timothy D. Phillips
    • 1
  • Robert L. Geneve
    • 2
  • Joseph P. Cahill
    • 3
  • David F. Hildebrand
    • 1
  1. 1.Department of Plant and Soil SciencesUniversity of KentuckyLexingtonUSA
  2. 2.Department of HorticultureUniversity of KentuckyLexingtonUSA
  3. 3.Ventura Botanical Gardens, Inc.VenturaUSA
  4. 4.National Center for Genetic Engineering and Biotechnology, Thailand Science ParkPathumthaniThailand

Personalised recommendations