Genetic Resources and Crop Evolution

, Volume 58, Issue 7, pp 1075–1085 | Cite as

Phenotypic and genomic characterization of vine cactus collection (Cactaceae)

  • N. Tel-ZurEmail author
  • Y. Mizrahi
  • A. Cisneros
  • J. Mouyal
  • B. Schneider
  • J. J. Doyle
Research Article


Hylocereus (Berger) Britton et Rose, Selenicereus (Berger) Britton et Rose and Epiphyllum Haw. species have commercial potential as exotic fruit crops in semi-arid and arid lands. The high genetic variability among these species offers an opportunity for commercial cultivation. Toward this end we investigated genomic and morphological characteristics including: nuclear DNA content (2C-values), stomatal length and density, potential yield and reproductive parameters in 64 Hylocereus, Selenicereus and Epiphyllum accessions. Nuclear DNA content ranged from 3.21 pg for S. grandiflorus (L.) Britton et Rose spp. grandiflorus to 8.77 pg for H. megalanthus (Vaup.) Bauer. All species were diploid except the tetraploids H. megalanthus and S. vagans (Bgek.) Britton et Rose. Stomatal length and density, fruit weight, potential yields, number of viable seeds per fruit and fruit maturation times were highly variable among accessions. No significant correlations were found between stomatal length, density, and nuclear DNA content, nor between fruit weight and seed number. The high genetic variability found between the accessions here provides further support for the excellent prospects of conserving and domesticating these exotic species.


Epiphyllum Flow cytometry Fruit traits Hylocereus Polyploidy Selenicereus Stomata length and density 



This research was supported by Research Grant No. IS-4017-07 from BARD, the United States—Israel Binational Agricultural research and Development Fund.


  1. Baker M (2006) A new florally dimorphic hexaploid, Echinocereus yavapaiensis sp. nov. (section Triglochidiatus, Cactaceae) from central Arizona. Plant Syst Evol 258:63–83CrossRefGoogle Scholar
  2. Banerji I, Sen S (1955) A contribution to the cytology and embryology of Hylocereus undatus (Haw) Br. and R. Bull Bot Soc Bengal 8:18–23Google Scholar
  3. Barthlott W, Hunt DR (1993) Cactaceae. In: Kubitzki K (ed) The families and the genera of vascular plants, vol 2. Springer, Berlin, pp 161–196Google Scholar
  4. Beard CE (1937) Some chromosome complements in the Cactaceae and a study of meiosis in Echinocereus papillosus. Bot Gaz 99:1–21CrossRefGoogle Scholar
  5. Beaulieu JM, Leitch IJ, Patel S, Pendharkar A, Knight CA (2008) Genome size is a strong predictor of cell size and stomatal density in angiosperms. New Phytol 179:975–986PubMedCrossRefGoogle Scholar
  6. Beck SL, Dunlop RW, Fossey A (2003) Stomatal length and frequency as a measure of ploidy level in black wattle, Acacia mearnsii (de Wild). Bot J Linn Soc 144:177–181CrossRefGoogle Scholar
  7. Bennett MD (1972) Nuclear DNA content and minimum generation time in herbaceous plants. Proc R Soc Lond B 181:109–135PubMedCrossRefGoogle Scholar
  8. Bennett MD, Leitch IJ (2005) Plant DNA C-values database (release 4.0, October 2005)
  9. Bingham ET (1968) Stomatal chloroplast in alfalfa at four ploidy levels. Crop Sci 8:509–511CrossRefGoogle Scholar
  10. Briones F, Palomino G, Garcia AM (2004) Chromosome analysis of Mammillaria supertexta, M. crucigera and M. haageana and their comparison with M. san-angelensis (Cactaceae). Caryologia 57:211–218Google Scholar
  11. Cisneros A, Tel-Zur N (2010) Embryo rescue and plant regeneration following interspecific crosses in the genus Hylocereus (Cactaceae). Euphytica 174:73–82CrossRefGoogle Scholar
  12. Comai L (2005) The advantages and disadvantages of being polyploidy. Nat Rev Genet 6:836–846PubMedCrossRefGoogle Scholar
  13. Dag A, Mizrahi Y (2005) Effect of pollination method on fruit set and fruit characteristics in the vine cactus Selenicereus megalanthus (“yellow pitaya”). J Hortic Sci Biotechnol 80:618–622Google Scholar
  14. Darlington CD (1965) Cytology. London, UKGoogle Scholar
  15. Doležel J, Binarova P, Lucretti S (1989) Analysis of nuclear DNA content in plant cells by flow cytometry. Biol Plant 31:113–120CrossRefGoogle Scholar
  16. Hammer K (2001) Cactaceae. In: Hanelt P, Institute of Plant Genetics and Crop Plant Research (eds) Mansfeld′s encyclopedia of agricultural and horticultural crops (except ornamentals). Springer, Berlin, pp 198–222Google Scholar
  17. Hcini K, Walker DJ, Bouzid S, González E, Correal E (2006) Determination of ploidy level and nuclear DNA content in Tunisian populations of Atriplex halimus L. Genet Resour Crop Evol 53(1):1–5CrossRefGoogle Scholar
  18. Hodgson JG et al (2010) Stomatal versus genome size in angiosperms: the somatic tail wagging the genomic dog? Ann Bot 105:573–584PubMedCrossRefGoogle Scholar
  19. Hunt D (2006) The New Cactus Lexicon. DH Books, UKGoogle Scholar
  20. Inceer H, Hayirlioglu-Ayaz S (2010) Chromosome numbers in Tripleurospermum Sch. Bip. (Asteraceae) and closely related genera: relationships between ploidy level and stomatal length. Plant Syst Evol 285:149–157PubMedCrossRefGoogle Scholar
  21. Lichtenzveig J, Abbo S, Nerd A, Tel-Zur N, Mizrahi Y (2000) Cytology and mating systems in the climbing cacti Hylocereus and Selenicereus. Am J Bot 87:1058–1065PubMedCrossRefGoogle Scholar
  22. Mizrahi Y, Nerd A (1999) Climbing and columnar cacti: new arid land fruit crops. In: Janick J (ed) Perspective on new crops and new uses. ASHS Press, Alexandria, pp 358–366Google Scholar
  23. Moscone EA, Baranyi M, Ebert I, Greilhuber J, Ehrendorfer F, Hunziker AT (2003) Analysis of nuclear DNA content in Capsicum (Solanaceae) by flow cytometry and feulgen densitometry. Ann Bot 92:21–29PubMedCrossRefGoogle Scholar
  24. Murray BG (2005) When does intraspecific C-value variation become taxonomically significant? Ann Bot 95:119–125PubMedCrossRefGoogle Scholar
  25. Negron-Ortiz V (2007) Chromosome numbers, nuclear DNA content, and polyploidy in Consolea (Cactaceae), an endemic cactus of the Caribbean islands. Am J Bot 94:1360–1370PubMedCrossRefGoogle Scholar
  26. Nerd A, Mizrahi Y (1998) Fruit development and ripening in yellow pitaya. J Amer Soc Hortic Sci 123:560–562Google Scholar
  27. Nerd A, Guttman F, Mizrahi Y (1999) Ripening and postharvest behaviour of fruits of two Hylocereus species (Cactaceae). Postharvest Biol Technol 17:39–45CrossRefGoogle Scholar
  28. Palomino G, Doležel J, Cid R, Brunner I, Mendez I, Rubluo A (1999) Nuclear genome stability of Mammillaria san-angelensis (Cactaceae) regenerants induced by auxinis in long-term in vitro culture. Plant Sci 141:191–200CrossRefGoogle Scholar
  29. Pinkava DJ, McLeod MG (1971) Chromosome numbers in some cacti of Western North America. Brittonia 23:171–176CrossRefGoogle Scholar
  30. Pinkava DJ, McLeod MG, McGill LA, Brown RC (1973) Chromosome numbers in some cacti of Western North America II. Brittonia 25:2–9CrossRefGoogle Scholar
  31. Ross R (1981) Chromosome counts, cytology and reproduction in the Cactaceae. Am J Bot 68:463–470CrossRefGoogle Scholar
  32. Segura S, Scheinvar L, Olalde G, Leblanc O, Filardo S, Muratalla A, Gallegos C, Flores C (2007) Genome sizes and ploidy levels in Mexican cactus pear species Opuntia (Tourn.) Mill. series Streptacanthae Britton et Rose, Leucotrichae DC., Heliabravoanae Scheinvar and Robustae Britton et Rose. Genet Resour Crop Evol 54:1033–1041CrossRefGoogle Scholar
  33. Spencer JL (1955) A cytological study of the Cactaceae of Puerto Rico. Bot Gaz 117:33–37CrossRefGoogle Scholar
  34. Tel-Zur N (2001) Genetic relationships between vine-cacti of the genera Hylocereus and Selenicereus. Ph.D. Thesis, Ben-Gurion University of the Negev, Beer-ShevaGoogle Scholar
  35. Tel-Zur N, Abbo S, Bar-Zvi D, Mizrahi Y (2004) Genetic relationships among Hylocereus and Selenicereus vine cacti (Cactaceae): evidence from hybridization and cytological studies. Ann Bot 94:527–534PubMedCrossRefGoogle Scholar
  36. Weiss J, Nerd A, Mizrahi Y (1994) Flowering behavior and pollination requirements in climbing cacti with fruit crop potential. HortScience 29:1487–1492Google Scholar
  37. Zonneveld BJM, Leitch IJ, Bennett MD (2005) First nuclear DNA amounts in more than 300 angiosperms. Ann Bot 96:229–244Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • N. Tel-Zur
    • 1
    Email author
  • Y. Mizrahi
    • 2
  • A. Cisneros
    • 1
  • J. Mouyal
    • 2
  • B. Schneider
    • 1
  • J. J. Doyle
    • 3
  1. 1.French Associates Institute for Agriculture and Biotechnology of Drylands, J. Blaustein Institutes for Desert Research (BIDR)Ben-Gurion University of the Negev (BGU)Sede-BoqerIsrael
  2. 2.Department of Life SciencesBen-Gurion University of the Negev (BGU)Beer-ShevaIsrael
  3. 3.Department of Plant BiologyCornell UniversityIthacaUSA

Personalised recommendations