Genetic Resources and Crop Evolution

, Volume 58, Issue 5, pp 713–725 | Cite as

Comparative analysis of Argonaute gene sequences in bananas (Musa sp.) shows conserved species-specific Ago-7 PIWI domains

  • Chee How Teo
  • Han Pin Pui
  • Rofina Yasmin Othman
  • Jennifer Ann Harikrishna
Research Article


The Argonaute proteins are key components in the effector complex of RNA silencing pathways which interact with small RNAs to mediate sequence specific silencing of nucleic acid targets. In plants, these proteins are involved in a diversity of biological roles such as antiviral defence, heterochromatin regulation and in the regulation of growth and development. This report describes the study of Argonaute gene sequences in bananas which are an important food staple for many developing nations. This study successfully isolated AGO7-specific PIWI domain genomic sequences from 12 diploid Musa species of three Musa sections and also from Ensete. The Musa AGO7-specific PIWI domain sequences showed the highest similarity to rice AGO7/SHOOTLESS4 with an average amino acid identity of 78%. Phylogenetic analysis of the Musa sequences revealed phylogenetic grouping that agrees fairly well with the present knowledge of the taxonomic classification of Musa species. In addition, this study estimated that there are at least 15 Argonaute genes or loci containing PIWI domain sequences in the genome of Musa acuminata ssp. malaccensis.


Argonaute Banana Musa PIWI domain Taxonomy 



The authors acknowledge the Ministry of Science, Technology and Innovation Malaysia (MOSTI) for grant 02-01-03-SF0008 (to JAH and RYO) and the University of Malaya Postgraduate Research Fund for grant P0068/2008B (to HPP).

Supplementary material

10722_2010_9614_MOESM1_ESM.docx (30 kb)
Supplementary material 1 (DOCX 32 kb)


  1. Adenot X, Elmayan T, Lauressergues D, Boutet S, Bouché N, Gasciolli V, Vaucheret H (2006) DRB4-dependent TAS3 trans-acting siRNAs control leaf morphology through AGO7. Curr Biol 16:927–932PubMedCrossRefGoogle Scholar
  2. Argent GCG (1976) The wild bananas of Papua New Guinea. Edinb J Bot 35:77–114Google Scholar
  3. Arias P, Dankers C, Liu P, Pilkauskas P (2003) The world banana economy 1985–2002. Food and Agriculture Organization of the United Nations, RomeGoogle Scholar
  4. Bartoš J, Alkhimova O, Doleželová M, De Langhe E, Doležel J (2005) Nuclear genome size and genomic distribution of ribosomal DNA in Musa and Ensete (Musaceae): taxonomic implications. Cytogenet Genome Res 109:50–57PubMedCrossRefGoogle Scholar
  5. Carmell MA, Xuan Z, Zhang MQ, Hannon GJ (2002) The Argonaute family: tentacles that reach into RNAi, developmental control, stem cell maintenance, and tumorigenesis. Gene Dev 16:2733–2742PubMedCrossRefGoogle Scholar
  6. Cerutti H, Casas-Mollano JA (2006) On the origin and functions of RNA-mediated silencing: from protists to man. Curr Genet 50:81–99PubMedCrossRefPubMedCentralGoogle Scholar
  7. Cerutti L, Mian N, Bateman A (2000) Domains in gene silencing and cell differentiation proteins: the novel PAZ domain and redefinition of the Piwi domain. Trends Biochem Sci 25:481–482PubMedCrossRefGoogle Scholar
  8. Cheesman EE (1947) Classification of the bananas. II. The genus Musa L. Kew Bull 2:106–117CrossRefGoogle Scholar
  9. Cheesman EE (1949) Classification of the bananas. III. Critical notes on species. Kew Bull 4:265–267CrossRefGoogle Scholar
  10. Ding SW, Li HW, Lu R, Li F, Li WX (2004) RNA silencing: a conserved antiviral immunity of plants and animals. Virus Res 102:109–115PubMedCrossRefGoogle Scholar
  11. Fahlgren N, Montgomery TA, Howell MD, Allen E, Dvorak SK, Alexander AL, Carrington JC (2006) Regulation of AUXIN RESPONSE FACTOR3 by TAS3 ta-siRNA affects developmental timing and patterning in Arabidopsis. Curr Biol 16:939–944PubMedCrossRefGoogle Scholar
  12. FAOSTAT (2008) FAO statistical database. Accessed: Dec 2008
  13. Gawel NJ, Jarret RL, Whittemore AP (1992) Restriction fragment length polymorphism (RFLP)-based phylogenetic analysis of Musa. Theor Appl Genet 84:286–290PubMedGoogle Scholar
  14. GMGC–The Global Musa Genomics Consortium (2002) A strategy for the global Musa genomics consortium. Report of a meeting held in Arlington, USA, 17–20 July 2001. The International Network for the Improvement of Banana and Plantain, MontpellierGoogle Scholar
  15. Guindon S, Gascuel O (2003) A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst Biol 52:696–704PubMedCrossRefGoogle Scholar
  16. Guindon S, Dufayard J-F, Lefort V, Anisimova M, Hordijk W, Gascuel O (2010) New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst Biol (in press)Google Scholar
  17. Häkkinen M (2009) Lectotypification of two Musa sections (Musaceae). Nor J Bot 27:207–209CrossRefGoogle Scholar
  18. Häkkinen M, Sharrock S (2002) Diversity in the genus Musa: focus on Rhodochlamys. Institute for the Improvement of Banana and Plantain Annual Report 2001:16–23Google Scholar
  19. Hall TA (1999) Bioedit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucl Acids Symp Ser 1999(41):95–98Google Scholar
  20. Hall TMT (2005) Structure and function of argonaute proteins. Structure 13:1403–1408PubMedCrossRefGoogle Scholar
  21. Heslop-Harrison JS, Schwarzacher T (2007) Domestication, genomics and the future for banana. Ann Bot-London 100:1073–1084CrossRefGoogle Scholar
  22. Hunter C, Sun H, Poethig RS (2003) The Arabidopsis heterochronic gene ZIPPY is an ARGONAUTE family member. Curr Biol 13:1734–1739PubMedCrossRefGoogle Scholar
  23. Hunter C, Willmann MR, Wu G, Yoshikawa M, de la Luz Gutiérrez-Nava M, Poethig RS (2006) Trans-acting siRNA-mediated repression of ETTIN and ARF4 regulates heteroblasty in Arabidopsis. Development 133:2973–2981PubMedCrossRefPubMedCentralGoogle Scholar
  24. Hutvagner G, Simard MJ (2008) Argonaute proteins: key players in RNA silencing. Nat Rev Mol Cell Bio 9:22–32CrossRefGoogle Scholar
  25. Kapoor M, Arora R, Lama T, Nijhawan A, Khurana JP, Tyagi AK, Kapoor S (2008) Genome-wide identification, organization and phylogenetic analysis of dicer-like, Argonaute and RNA-dependent RNA polymerase gene families and their expression analysis during reproductive development and stress in rice. BMC Genomics 9:451PubMedCrossRefPubMedCentralGoogle Scholar
  26. Lescot M, Piffanelli P, Ciampi AY, Ruiz M, Blanc G, Leebens-Mack J, da Silva FR, Santos CM, D’Hont A, Garsmeur O, Vilarinhos AD, Kanamori H, Matsumoto T, Ronning CM, Cheung F, Haas BJ, Althoff R, Arbogast T, Hine E, Pappas GJ Jr, Sasaki T, Souza MT Jr, Miller RN, Glaszmann JC, Town CD (2008) Insights into the Musa genome: syntenic relationships to rice and between Musa species. BMC Genomics 9:58PubMedCrossRefPubMedCentralGoogle Scholar
  27. Lingel A, Izaurralde E (2004) RNAi: finding the elusive endonuclease. RNA 10:1675–1679PubMedCrossRefPubMedCentralGoogle Scholar
  28. Liu A-Z, Kress WJ, Li D-Z (2010) Phylogenetic analyses of the banana family (Musaceae) based on nuclear ribosomal (ITS) and chloroplast (trnL-F) evidence. Taxon 59:20–28Google Scholar
  29. Montgomery TA, Howell MD, Cuperus JT, Li DW, Hansen JE, Alexander AL, Chapman EJ, Fahlgren N, Allen E, Carrington JC (2008) Specificity of ARGONAUTE7-miR390 interaction and dual functionality in TAS3 trans-acting siRNA formation. Cell 133:128–141PubMedCrossRefGoogle Scholar
  30. Morel J-B, Godon C, Mourrain P, Béclin C, Boutet S, Feuerbach F, Proux F, Vaucheret H (2002) Fertile hypomorphic ARGONAUTE (ago1) mutants impaired in post-transcriptional gene silencing and virus resistance. Plant Cell 14:629–639PubMedCrossRefPubMedCentralGoogle Scholar
  31. Murphy D, Dancis B, Brown JR (2008) The evolution of core proteins involved in microRNA biogenesis. BMC Evol Biol 8:92PubMedCrossRefPubMedCentralGoogle Scholar
  32. Nwakanma DC, Pillay M, Okoli BE, Tenkouano A (2003) Sectional relationships in the genus Musa L. inferred from the PCR-RFLP of organelle DNA sequences. Theor Appl Genet 107:850–856PubMedCrossRefGoogle Scholar
  33. Peters L, Meister G (2007) Argonaute proteins: mediators of RNA silencing. Molecular Cell 26:611–623PubMedCrossRefGoogle Scholar
  34. Posada D (2008) jModeltest: phylogenetic model averaging. Mol Biol Evol 25:1253–1256PubMedCrossRefGoogle Scholar
  35. Roux N, Baurens FC, Doležel J, Hřibová E, Heslop-Harrison P, Town C, Sasaki T, Matsumoto T, Aert R, Remy S, Souza M, Lagoda P (2008) Genomics of banana and plantain (Musa spp.), major staple crops in the tropics. In: Moore PH, Ming R (eds) Genomics of tropical crop plants. Springer, New York, pp 83–111CrossRefGoogle Scholar
  36. Shepherd K (1988) Observations on Musa taxonomy. In: Jarret RL (ed) Identification of genetic diversity in the genus Musa. Proceedings of an international workshop held at Los Banos, Philippines 5–10 September 1988. INIBAP, Montpellier, pp 158–165Google Scholar
  37. Shi ZY, Wang J, Wan XS, Shen GZ, Wang XQ, Zhang JL (2007) Over-expression of rice OsAGO7 gene induces upward curling of the leaf blade that enhanced erect-leaf habit. Planta 226:99–108PubMedCrossRefGoogle Scholar
  38. Simmonds NW (1954) Isolation in Musa, sections Musa and Rhodochlamys. Evolution 8:65–74CrossRefGoogle Scholar
  39. Simmonds NW (1962) The evolution of the bananas. Longman, LondonGoogle Scholar
  40. Simmonds NW, Weatherup STC (1990) Numerical taxonomy of the wild bananas (Musa). New Phytol 115:567–571CrossRefGoogle Scholar
  41. Song JJ, Smith SK, Hannon GJ, Joshua-Tor L (2004) Crystal structure of Argonaute and its implications for RISC slicer activity. Science 305:1434–1437PubMedCrossRefGoogle Scholar
  42. Stover RH, Simmonds NW (1987) Bananas. Longman, LondonGoogle Scholar
  43. Swennen R (1990) Limitations of morphotaxonomy: names and synonyms of plantain in Africa and elsewhere. In: Jarret RL (ed) Identification of genetic diversity in the genus Musa. Proceedings of an international workshop held at Los Banos, Philippines 5–10 September 1988. INIBAP, Montpellier, pp 172–210Google Scholar
  44. Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596–1599PubMedCrossRefGoogle Scholar
  45. Teo CH, Tan SH, Othman YR, Schwarzacher T (2002) The cloning of Ty1-copia-like retrotransposons from 10 varieties of banana (Musa sp.). J Biochem Mol Biol Biophys 6:193–201PubMedCrossRefGoogle Scholar
  46. Tolia NH, Joshua-Tor L (2007) Slicer and the Argonautes. Nat Chem Biol 3:36–43PubMedCrossRefGoogle Scholar
  47. Ude G, Pillay M, Nwakanma D, Tenkouano A (2002) Analysis of genetic diversity and sectional relationships in Musa using AFLP markers. Theor Appl Genet 104:1239–1245PubMedCrossRefGoogle Scholar
  48. Vaucheret H (2008) Plant ARGONAUTES. Trends Plant Sci 13:350–358PubMedCrossRefGoogle Scholar
  49. Wong C, Kiew R, Argent G, Set O, Lee SK, Gan YY (2002) Assessment of the validity of the sections in Musa (Musaceae) using AFLP. Ann Bot-London 90:231–238CrossRefGoogle Scholar
  50. Wu CY (1978) Musella lasiocarpa. Acta Phytotax Sin 16:56–57Google Scholar
  51. Zaratiegui M, Irvine DV, Martienssen RA (2007) Noncoding RNAs and gene silencing. Cell 128:763–776PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Chee How Teo
    • 1
  • Han Pin Pui
    • 1
  • Rofina Yasmin Othman
    • 1
  • Jennifer Ann Harikrishna
    • 1
  1. 1.Centre for Research in Biotechnology for Agriculture (CEBAR) & Institute of Biological Sciences, Faculty of ScienceUniversity of MalayaKuala LumpurMalaysia

Personalised recommendations