Genetic Resources and Crop Evolution

, Volume 58, Issue 3, pp 425–437 | Cite as

Characterization of Italian grasspea (Lathyrus sativus L.) germplasm using agronomic traits, biochemical and molecular markers

  • Lucia LioiEmail author
  • Francesca Sparvoli
  • Gabriella Sonnante
  • Gaetano Laghetti
  • Francesco Lupo
  • Massimo Zaccardelli
Research Article


Genetic relationships among 13 grasspea (Lathyrus sativus L.) landraces mainly collected in Southern Italy were assessed using agronomic traits, biochemical and molecular markers. Field trials were carried out in two locations and revealed a high influence of field locations on yield, but a low genotype × environment interaction. Despite this, the agronomic data obtained provided useful information for the choice of the best grasspea landraces for southern Italian marginal areas. Seed storage proteins utilised as biochemical markers were not able to detect polymorphisms, on the contrary both classes of molecular markers used i.e. AFLP and SSR, provided useful information on genetic variation and relationships among landraces. Even though the number of polymorphic fragments detected by AFLP technique was low, it was sufficient to discriminate all the accessions. The use of SSR to detect polymorphic sites in grasspea showed that most landraces were clearly grouped in two sub-clusters. One comprised two landraces from most northern localities, while all the other landraces were clustered together at a very narrow genetic distance.


AFLP Field trials Genetic resources Italian grasspea Lathyrus sativus L. SSR 



Research partially supported by Ministry of Agriculture Food and Forestry Policies with funds released by C.I.P.E (Resolution 17/2003). We thank Maria Galiano and Giovanni Tagliabue for biochemical and molecular analyses support.


  1. Asmussen CB, Liston A (1998) Chloroplast DNA characters, phylogeny, and classification of Lathyrus (Fabaceae). Am J Bot 85:387–401CrossRefGoogle Scholar
  2. Badr A, El Shazly H, El Rabey H, Watson LE (2002) Systematic relationships in Lathyrus sect. Lathyrus (Fabaceae) based on amplified fragment length polymorphism (AFLP) data. Can J Bot 80:962–969. doi: 10.1139/B02-84 CrossRefGoogle Scholar
  3. Belaïd Y, Chtourou-Ghorbel N, Marrakchi M, Trifi-Farah N (2006) Genetic diversity within and between populations of Lathyrus genus (Fabaceae) revealed by ISSR markers. Genet Resour Crop Evol 53:1413–1418. doi: 10.1007/s10722-005-5680-0 CrossRefGoogle Scholar
  4. Bollini R, Chrispeels MJ (1978) Characterization and subcellular localization of vicilin and phytohemagglutinin, the two major reserve proteins of Phaseolus vulgaris L. Planta 142:291–298CrossRefGoogle Scholar
  5. Campbell CG (1997) Grasspea (Lathyrus sativus L.) promoting the conservation and use of underutilized and neglected crops. No 18. Institute of Plant Genetics and Crop Plant Research, Gatersleben/International Plant Genetic Resources Institute, RomeGoogle Scholar
  6. Chowdhury MA, Slinkard AE (1997) Natural outcrossing in grasspea. J Hered 88:154–156Google Scholar
  7. Chowdhury MA, Slinkard AE (2000) Genetic diversity in grasspea (Lathyrus sativus L.). Genet Resour Crop Evol 46:163–169CrossRefGoogle Scholar
  8. Chtourou-Ghorbel N, Lauga B, Combes D, Marrakchi M (2001) Comparative genetic diversity studies in the genus Lathyrus using RFLP and RAPD markers. Lathyrus Lathyrism Newsl 2:1–7Google Scholar
  9. De Falco E, Piergiovanni AR, Zaccardelli M, Lupo F, Carbonaro M, Sparvoli F, Giordano I (2007) Yield and qualitative characterization of a collection of Lathyrus sativus L. CIGR Section VI, 3rd International Symposium, 24–26 September 2007, Naples (Italy), 245Google Scholar
  10. Emre I (2009) Electrophoretic analysis of some Lathyrus L. species based on seed storage proteins. Genet Resour Crop Evol 56:31–38. doi: 10.1007/s10722-008-9339-5 CrossRefGoogle Scholar
  11. Gepts P, Bliss FA (1986) Phaseolin variability among wild and cultivated common beans (Phaseolus vulgaris) from Colombia. Econ Bot 40:469–478CrossRefGoogle Scholar
  12. Gepts P, Osborn TC, Rashka K, Bliss FA (1986) Phaseolin-protein variability in wild forms and landraces of the common bean (Phaseolus vulgaris): evidence for multiple centers of domestication. Econ Bot 40:451–468CrossRefGoogle Scholar
  13. Granati E, Bisignano V, Chiaretti D, Crinò P, Polignano GB (2003) Characterization of Italian and exotic Lathyrus germplasm for quality traits. Genet Resour Crop Evol 50:273–280CrossRefGoogle Scholar
  14. Hammer K, Knupfer H, Laghetti G, Perrino P (1992) Seeds from the past. A catalogue of crop germplasm in South Italy and Sicily. Germplasm Institute of CNR, Bari, p 173Google Scholar
  15. Hanbury CD, Siddique KHM, Galwey NW, Cocks PS (1999) Genotype-environment interaction for seed yield and ODAP concentration of Lathyrus sativus L. and L. cicera L. in Mediterranean-type environments. Euphytica 110:445–460CrossRefGoogle Scholar
  16. Hanbury CD, White CL, Mullan BP, Siddique HM (2000) A review of the potential of Lathyrus sativus L. and L. cicera L. grain for use as animal feed. Anim Feed Sci Technol 87:1–23CrossRefGoogle Scholar
  17. ICARDA Grasspea–Savior or Sickener? Annual Report 2000Google Scholar
  18. Infantino S, Laghetti G, Filippetti A, Perrino P (1994) Genetic variation in a collection of Lathyrus sativus L. Agr Med 124:70–78Google Scholar
  19. Jaccard P (1908) Nouvelles recherches sur la distribution florale. Bull Soc Vaud Sci Nat 44:223–270Google Scholar
  20. Kenicer GJ, Kajita T, Pennington RT, Murata J (2005) Systematics and biogeography of Lathyrus (Leguminosae) based on internal transcribed spacer and cpDNA sequence data. Am J Bot 92:1199–1209CrossRefGoogle Scholar
  21. Maras M, Šuštar-Vozlič J, Javornik B, Meglič V (2008) The efficiency of AFLP and SSR markers in genetic diversity estimation and gene pool classification of common bean (Phaseolus vulgaris L.). Acta Agricul Sloven 91:87–96CrossRefGoogle Scholar
  22. March JF, Domoney C, Casey R (1987) Legumin heterogeneity in Pisum. Biochem Genet 25:449–458PubMedCrossRefGoogle Scholar
  23. Nei M (1978) Estimation of average heterozygosity and genetic distance from a small number of individuals. Genetics 89:583–590PubMedGoogle Scholar
  24. Paz MM, Veilleux RE (1997) Genetic diversity based on randomly amplified polymorphic DNA (RAPD) and its relationship with the performance of diploid potato hybrids. J Amer Soc Hort Sci 122:740–747Google Scholar
  25. Polignano GB, Uggenti P, Bisignano V, Alba E (2003) Patterns of variation in Lathyrus sativus and some related species. Agr Med 133:81–88Google Scholar
  26. Polignano GB, Bisignano V, Tomaselli V, Uggenti P, Alba V, Della Gatta C (2009) Genotype × environment interaction in grass pea (Lathyrus sativus L.) lines. Intern J Agron. doi:  10.1155/2009/898396
  27. Polignano GB, Lotti C, De Giovanni C, Albo M, Ricciardi L (in press) Comparative analysis of RAPD and AFLP polymorphisms in a core collection of grasspea (Lathyrus sativus L.). Lathyrus Lathyrism NewslGoogle Scholar
  28. Poma I, Noto F (1990) La cicerchia, una leguminosa da granella da recuperare. Infor Agr 46:41–48Google Scholar
  29. Przybylska J, Zimniak-Przybylska Z, Krajewski P (2000) Diversity of seed globulins in Lathyrus sativus L. and some related species. Genet Resour Crop Evol 47:239–246CrossRefGoogle Scholar
  30. Rohlf FJ (2000) NTSYS-pc: numerical taxonomy and multivariate analysis system, version 2.1. Exeter Software, SetauketGoogle Scholar
  31. Rosa MJS, Ferreira RB, Teixeira AR (2000) Storage proteins from Lathyrus sativus seeds. J Agric Food Chem 48:5432–5439PubMedCrossRefGoogle Scholar
  32. SAS Institute Inc. (2002-2003) SAS/STAT® Guide for Personal Computers, Cary, NC, USAGoogle Scholar
  33. Skiba B, Ford R, Pang ECK (2003) Amplification and detection of polymorphic sequence-tagged sites in Lathyrus sativus. Plant Mol Biol Rep 21:391–404. doi: 10.1007/s00122-004-1812-8 CrossRefGoogle Scholar
  34. Staswick PE, Broué P, Nielsen NC (1983) Glycinin composition of several perennial species related to soybean. Plant Physiol 72:1114–1118PubMedCrossRefGoogle Scholar
  35. Tavoletti S, Iommarini L (2007) Molecular marker analysis of genetic variation characterizing a grasspea (Lathyrus sativus) collection from Central Italy. Plant Breed 126:607–611. doi: 10.1111/j.1439-0523.2007.01407.x CrossRefGoogle Scholar
  36. Varshney RK, Chabane K, Hendre PS, Aggarwal RK, Graner A (2007) Comparative assessment of EST-SSR. EST-SNP and AFLP markers for evaluation of genetic diversity and conservation of genetic resources using wild, cultivated and elite barley. Plant Sci 173:638–649CrossRefGoogle Scholar
  37. Vaz Patto MC, Skiba B, Pang ECK, Ochatt SJ, Lambein F, Rubiales D (2006) Lathyrus improvement for resistance against biotic and abiotic stresses: from classical breeding to marker assisted selection. Euphytica 147:133–147. doi: 10.1007/s10681-006-3607-2 CrossRefGoogle Scholar
  38. Vos P, Hogers R, Bleeker M, Reijans M, van de Lee T, Hornes M, Friters A, Pot J, Paleman J, Kuiper M, Zabeau M (1995) AFLP: a new technique for DNA fingerprinting. Nucl Acids Res 23:4407–4414PubMedCrossRefGoogle Scholar
  39. Yan ZY, Spencer PS, Li ZX, Liang YM, Wang YF, Wang CY, Li FM (2006) Lathyrus sativus (grasspea) and its neurotoxin ODAP. Phytochem 67:107–121. doi: 10.1016/j.phytochem.2005.10.022 CrossRefGoogle Scholar
  40. Yeh FC, Yang R-C, Boyle T (1999) POPGENE version 1·32. Microsoft Window-based freeware for population genetic analysis.

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Lucia Lioi
    • 1
    Email author
  • Francesca Sparvoli
    • 2
  • Gabriella Sonnante
    • 1
  • Gaetano Laghetti
    • 1
  • Francesco Lupo
    • 3
  • Massimo Zaccardelli
    • 3
  1. 1.CNR-Istituto di Genetica VegetaleBariItaly
  2. 2.CNR-Istituto di Biologia e Biotecnologia AgrariaMilanItaly
  3. 3.CRA-Centro di Ricerca per l’ Orticoltura, Azienda Sperimentale di BattipagliaBattipagliaItaly

Personalised recommendations