Genetic Resources and Crop Evolution

, Volume 58, Issue 3, pp 397–407 | Cite as

Phenotypic diversity of plant morphological and root descriptor traits within a sweet potato, Ipomoea batatas (L.) Lam., germplasm collection from Tanzania

  • Abdelhameed Elameen
  • Arild Larsen
  • Sonja S. KlemsdalEmail author
  • Siri Fjellheim
  • Leif Sundheim
  • Susan Msolla
  • Esther Masumba
  • Odd Arne Rognli
Research Article


In Tanzania sweet potato ranks as the third most important crop after cassava and potato. We studied the phenotypic diversity of morphological plant and root descriptor traits in accessions of the sweet potato germplasm collection of Sokoine University of Agriculture, Morogoro and Sugarcane Research Institute, Kibaha, Tanzania, using phenotypic characters. A total number of 105 sweet potato accessions of different geographic origins were studied in field trials of The Sugarcane Research Institute at Kibaha Tanzania, and data were recorded for 27 phenotypic characters. Estimates of pair-wise phenotypic similarities using the Manhattan coefficient varied from 0.023 to 0.814, with a mean of 0.285. Cluster analysis was conducted using the unweighted pair group method with arithmetic mean (UPGMA) and Principal Coordinate Analysis (PCO). The clustering of phenotypic data resulted in a dendrogram which was discordant with geographic origin and AFLP data. The analysis of variance (ANOVA) revealed highly significant variation among the accessions for 21 out of the 27 characters studied. Phenotypic analyses revealed a wider range of variability than AFLP analyses. Comparison of molecular and phenotypic data using the Mantel test showed a very low correlation (r 2 = 0.0007). Molecular and phenotypic classifications are discordant, and both are necessary to classify the germplasm correctly and to clarify genetic relationships among sweet potato accessions.


Germplasm Heritability Ipomoea batatas Morphological characters Sweet potato 



The authors thank the staff at the Germplasm Centre of The Sugarcane Research Institute, Kibaha, and at Sokoine University of Agriculture, Morogoro, Tanzania, for their cooperation and for supplying us with the phenotypic data of sweet potato accessions used in the study. This work has been partly supported by NORAD (Norwegian Agency for Development Cooperation, project 021 TARPII-SUA).


  1. Abdellaoui R, Rouaissi M, Chenennaoui S, Ben Naceur M, Ben Hmida J, Leila BBK (2007) Genetic diversity of Tunisian local barley accessions analyzed with morphological and RAPD makers: relationship between the two methods. Kor J Genet 29:315–322Google Scholar
  2. AGROBASE (2001) AGROBASE Generation II, Users manual. Agronomix Software, Inc., WinnipegGoogle Scholar
  3. Baker RH, Yu XB, DeSalle R (1998) Assessing the relative contribution of molecular and morphological characters in simultaneous analysis trees. Mol Phylogenet Evol 9:427–436PubMedCrossRefGoogle Scholar
  4. Campos ET, Espinosa MAG, Warburton ML, Varela AS, Monter AV (2005) Characterization of mandarin (Citrus spp.) using morphological and AFLP markers. Interciencia 30:687–693Google Scholar
  5. CIP (1999) Annual report. International Potato Center, LimaGoogle Scholar
  6. Crespan M (2004) Evidence on the evolution of polymorphism of microsatellite markers in varieties of Vitis vinifera L. Theor Appl Genet 108:231–237PubMedCrossRefGoogle Scholar
  7. Diaz JP, Schmiediche P, Austin DF (1996) Polygon of crossability between eleven species of Ipomoea: section Batatas (Convolvulaceae). Euphytica 88:189–200CrossRefGoogle Scholar
  8. Elameen A, Fjellheim S, Larsen A, Rognli OA, Sundheim L, Msolla E, Masumba S, Mtunda K, Klemsdal SS (2008) Analysis of genetic diversity in a sweet potato (Ipomoea batatas L.) germplasm collection from Tanzania as revealed by AFLP. Genet Resour Crop Evol 55:397–408CrossRefGoogle Scholar
  9. Fajardo S, La Bonte DR, Jarret RL (2002) Identifying and selecting genetic diversity in Papua New Guinea sweet potato Ipomoea batatas (L.) Lam. Germplasm collected as botanical seed. Genet Resour Crop Evol 49:463–470CrossRefGoogle Scholar
  10. FAO, Production Yearbook (2004) FAO Statistic Series No 134. Rome, ItalyGoogle Scholar
  11. Gepts P (1993) The use of molecular and biochemical markers in crop evolution studies. Evol Biol 27:51–94Google Scholar
  12. Green RC (2005) Sweet potato transfers in Polynesian prehistory. In: Ballard C, Brown P, Bourke RM, Harwood T (eds) The sweet potato in Oceania: a reappraisal. The University of Sydney, Sydney, pp 43–62Google Scholar
  13. Halliburton R (2004) Introduction to population genetics. Upper Saddle River, Pearson Prentice hall, pp 231–333Google Scholar
  14. Harlan JR (1992) Crops and man, 2nd edn. American Society of Agronomy and Crop Science Society of America, Madison, p 12Google Scholar
  15. He GH, Prakash CS, Jarret RL (1995) Analysis of genetic diversity in sweet potato (Ipomoea batatas) germplasm collection using DNA amplification fingerprinting. Genome 38:938–945PubMedCrossRefGoogle Scholar
  16. Huamán Z (1991) Descriptors for sweet potato. CIP, AVRDC, IBPGR, Rome, pp 43–44Google Scholar
  17. Huamán Z (1992) Morphologic identification of duplicates in collections of Ipomoea batatas. CIP Research Guide 36. International Potato Centre, Lima, PeruGoogle Scholar
  18. Huamán Z, Aguilar C, Ortiz R (1999) Selecting a Peruvian sweet potato core collection on the basis of morphological, eco-geographical, and disease and pest reaction data. Theor Appl Genet 98:840–844CrossRefGoogle Scholar
  19. Hutchings MJ, de Kroon H (1994) Foraging in plants: the role of morphological plasticity in resource acquisition. Adv Ecol Res 25:159–238CrossRefGoogle Scholar
  20. Jones A, Dukes PD, Schalk JM (1986) Sweet potato breeding. In: Basset MJ (ed) Breeding vegetable crops, Av Publishing C, USA, pp 1–35Google Scholar
  21. Kuo CG (1991) Conservation and distribution of sweet potato germplasm. In: Dodds JH (ed) In vitro methods for conservation of plant genetic resources. Chapman and Hall, New York, pp 123–147Google Scholar
  22. Lin KH, Lai YC, Chang KY, Chen YF, Hwang YS, Lo HF (2007) Improving breeding efficiency for quality and yield of sweet potato. Bot Stud 48:283–292Google Scholar
  23. Magoon ML, Krishnan R, Bai KV (1970) Cytological evidence in the origin of sweet potato. Theor Appl Genet 40:360–366CrossRefGoogle Scholar
  24. Mantel NA (1967) The detection of disease clustering and a generalized regression approach. Cancer Res 27:209–220PubMedGoogle Scholar
  25. Naskar SK (1996) Genetic divergence for yield contributing traits in sweet potato (Ipomoea batatas). In: Kurup GT, Palaniswami MS, Potty VP, Padmaja G, Labeerathumma S, Pillai SV (eds) Tropical tuber crops: problems, prospects and future strategies. Science Publishers, New Hampshire, pp 133–136Google Scholar
  26. NRC (National Research Council) (1993) Agricultural crop issues and policies: managing global genetic resources, vol I. National Research Council (USA), Washington DC, p 123Google Scholar
  27. Ozias-Akins P, Jarret RL (1994) Nuclear DNA content and ploidy levels in the genus Ipomoea. J Am Soc Hort Sci 119:110–115Google Scholar
  28. Price EAC, Marshall C (1999) Clonal plants and environmental heterogeneity: an introduction to the proceedings. Plant Ecol 141:3–7CrossRefGoogle Scholar
  29. Rao VR, Debouck T, Iwanga M (1994) The role of international organisations in root and tuber crop conservation. In: The first ministry of agriculture, forestry and fisheries. International workshop on genetic resources—root and tuber crops, 15–17 March 1994, Tsukuba, MAFF, Japan, pp 7–22Google Scholar
  30. Rohlf FJ (2000) NTSYS-pc, numerical taxonomy and multivariate analysis system, v.2.02. Exeter software, New YorkGoogle Scholar
  31. Roldan-Ruiz I, Van euwijk FA, Gilliland TJ, Dubreuil P, Dillmann C, Lallemand J, De Loose M, Baril CP (2001) A comparative study of molecular and morphological methods of describing relationships between perennial ryegrass (Lolium perenne L.) varieties. Theor Appl Genet 103:1138–1150CrossRefGoogle Scholar
  32. Sagredo B, Hinrichsen P, López H, Cubillos A, Munoz C (1998) Genetic variation of sweet potatoes (Ipomoea batatas L.) cultivated in Chile determined by RAPDs. Euphytica 101:193–198CrossRefGoogle Scholar
  33. SAS (2002–2003) SAS for Windows Release 9.1, SAS Institute, Inc., CaryGoogle Scholar
  34. Sihachakr D, Ducreux G (1987) Plant regeneration from protoplast culture of sweet potato (Ipomoea batatas Lam.). Plant Cell Rep 6:326–328CrossRefGoogle Scholar
  35. Sneath PA, Sokal RR (1973) Numerical taxonomy. Freeman, San Francisco, p 573Google Scholar
  36. Solis JS, Ulloa DM, Rodriguez LA (2007) Molecular description and similarity relationships among native germplasm potatoes (Solanum tuberosum ssp. tuberosum L.) using morphological data and AFLP markers. Electronic J Biotech 10:436–443Google Scholar
  37. Spooner DM, Mclean K, Ramsay G, Waugh R, Bryan GJ (2005) Single domestication for potato based on multilocus amplified fragment length polymorphism genotyping. PNAS 102:14694–14699PubMedCrossRefGoogle Scholar
  38. Tairo F, Mneney E, Kullaya A (2008) Morphological and agronomical characterization of sweet potato (Ipomoea batatas Lam.) germplasm collection from Tanzania. Afr J Plant Sci 8:77–85Google Scholar
  39. Tsegaye E, Sastry D, Dechassa N (2007) Genetic variability for the yield and other agronomic traits in sweet potato. Indian J Hort 64:237–240Google Scholar
  40. van Kleunen M, Fischer M, Schmid B (2002) Experimental life-history evolution: selection on the allocation to sexual reproduction and its plasticity in a clonal plant. Evolution 56:2168–2177PubMedCrossRefGoogle Scholar
  41. Vaughan JG, Geissler CA (1997) The new Oxford book of food plants. Oxford University Press, OxfordGoogle Scholar
  42. Veasey EA, Silva JSD, Rosa MS, Borges A, Bressan ED, Peroni N (2007) Phenology and morphological diversity of sweet potato (Ipomoea batatas) landraces of the Vale do Ribeira. Scientia Agricola 64:416–427CrossRefGoogle Scholar
  43. Veteloainen M, Gammelga E, Valkonen JPT (2005) Diversity of Nordic landrace potatoes (Solanum tuberosum L.) revealed by AFLPs and morphological characters. Genet Resour Crop Evol 52:999–1010CrossRefGoogle Scholar
  44. Wachira FN, Waugh R, Hackett CA, Powell W (1995) Detection of genetic diversity in tea (Camellia sinensis) using RAPD markers. Genome 38:201–210PubMedCrossRefGoogle Scholar
  45. Wendel JF, Doyle JJ (1998) Phylogenetic incongruence: window into genome history and molecular evolution. In: Soltis DE, Soltis PS, Doyle JJ (eds) Molecular systematics of plants II: DNA sequencing. Kluwer Academic Publishers, Boston, pp 265–296Google Scholar
  46. Zdunic G, Pejic I, Kontic JK, Vukicevic D, Vokurka A, Pezo I, Maletic E (2008) Comparison of genetic and morphological data for inferring similarity among native Dalmatian (Croatia) grapevine cultivars (Vitis vinifera L.). J Food Agric Environ 6:333–336Google Scholar
  47. Zhang D, Cervantes J, Huaman EC, Ghislain M (2000) Assessing genetic diversity of sweet potato (Ipomoea batatas (L.) Lam.) cultivars from tropical America using AFLP. Genet Resour Crop Evol 47:659–665CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Abdelhameed Elameen
    • 1
    • 2
  • Arild Larsen
    • 3
  • Sonja S. Klemsdal
    • 1
    Email author
  • Siri Fjellheim
    • 2
  • Leif Sundheim
    • 1
  • Susan Msolla
    • 4
  • Esther Masumba
    • 5
  • Odd Arne Rognli
    • 2
  1. 1.Plant Health and Plant Protection Division, Department of Genetics and BiotechnologyBioforsk, Norwegian Institute for Agricultural and Environmental ResearchÅsNorway
  2. 2.Department of Plant and Environmental SciencesNorwegian University of Life SciencesÅsNorway
  3. 3.Graminor ASBodøNorway
  4. 4.Department of Crop Science and ProductionSokoine University of AgricultureChuo Kikuu, MorogoroTanzania
  5. 5.Root/Tuber Crops ProgrammeSugarcane Research InstituteKibaha, CoastTanzania

Personalised recommendations