Genetic Resources and Crop Evolution

, Volume 58, Issue 1, pp 11–53 | Cite as

Geographic distribution and domestication of wild emmer wheat (Triticum dicoccoides)

  • Hakan ÖzkanEmail author
  • George Willcox
  • Andreas Graner
  • Francesco Salamini
  • Benjamin KilianEmail author


The transition from hunting and gathering to agriculture had revolutionary consequences for the development of human societies. Crops such as wheat, barley, lentil, pea and chickpea played a crucial role in the establishment of complex civilizations in south west Asia. Wild emmer wheat (Triticum dicoccoides) was one of the first cereals to be domesticated in the Fertile Crescent between c. 12,000 and c. 10,000 years ago. This step provided the key for subsequent bread wheat evolution. Wild emmer is found today in the western Fertile Crescent in Jordan, Syria and Israel, the central part of southeastern Turkey and mountain areas in eastern Iraq and western Iran. In this review, we summarize issues concerning geography and domestication of wild emmer wheat based on published molecular and archaeobotanical data and on our recent findings. We suggest that modern domestic tetraploid wheats derived from wild emmer lines from southeast Turkey. However, our understanding of emmer domestication is not complete. The “dispersed-specific” domestication model proposed for einkorn might well be appropriate also for emmer.


Archaeobotany Domestication Emmer wheat Evolution Molecular diversity Triticum dicoccoides 



We thank Sigi Effgen for excellent technical assistance during the last years. We are grateful to Ofer Bar-Yosef, Klaus Schmidt, Reinder Neef, Andrea Brandolini, Karl Hammer, Ekaterina Badaeva, Fedor Konovalov, Andrey Pomortsev, Nicolay Goncharov, Jacques David, Angela Schlumbaum and Eitan Millet for discussions, to Alexander Walther for GIS based map production. We are greatly indebted to Moshe Feldman and Bill Martin and also to Sue Colledge for providing much of the data in Table 1.


  1. Aaronsohn A (1909) Über die in Palästina und Syrien wildwachsend aufgefundenen Getreidearten. Verhandl der k.u.k. zool-bot Ges Wien 59:485–509Google Scholar
  2. Aaronsohn A (1910) Agricultural and botanical explorations in Palestine. US Department of Agriculture, Washington, Bull Bur PI Industry 180, pp 1–64Google Scholar
  3. Aaronsohn A, Schweinfurth G (1906) Die Auffindung des wilden Emmers (Triticum dicoccon) in Nordpalästina. Altneuland III 7–8:213–220Google Scholar
  4. Abbo S, Gopher O, Peleg Z, Saranga Y, Fahima T, Salamini F, Lev-Yadun S (2006) The ripples of “The Big (agricultural) Bang”: the spread of early wheat cultivation. Genome 49:861–863CrossRefPubMedGoogle Scholar
  5. Allaby RG, Brown TA (2003) AFLP data and the origins of domesticated crops. Genome 46:448–453CrossRefPubMedGoogle Scholar
  6. Allaby RG, Brown TA (2004) Reply to the comment by Salamini et al. on “AFLP data and the origins of domesticated crops”. Genome 47:621–622CrossRefGoogle Scholar
  7. Allaby RG, Fuller DQ, Brown TA (2008) The genetic expectations of a protracted model for the origins of domesticated crops. Proc Natl Acad Sci USA 105:13982–13986CrossRefPubMedGoogle Scholar
  8. Ayal S, Ophir R, Levy AA (2005) Genomics of tetraploid wheat domestication. Wheat Inf Serv 100:185–204Google Scholar
  9. Bar-Yosef O (2002) The Natufian culture and the early Neolithic—social and economic trends. In: Bellwood P, Renfrew C (eds) Examining the farming/language dispersal hypothesis. McDonald Institute for Archaeological Research, Cambridge, pp 113–126Google Scholar
  10. Blumler MA (1998) Introgression of durum into wild emmer and the agricultural origin question. In: Damania AB, Valkoun, J, Willcox G, Qualset CO (eds) The origins of agriculture and crop domestication, ICARDA, Aleppo, Syria, ICARDA, IPGRI, FAO and UC/GRCP, pp 252–268Google Scholar
  11. Braadbaart F (2008) Carbonisation and morphological changes in modern dehusked and husked Triticum dicoccum and Triticum aestivum grains. Veg Hist Archaeobot 17:155–166CrossRefGoogle Scholar
  12. Caballero L, Bancel E, Debiton C, Branlard G (2008) Granule-bound starch synthase (GBSS) diversity of ancient wheat and related species. Plant Breed 127:548–553CrossRefGoogle Scholar
  13. Cavalli-Sforza LL, Menozzi P, Piazza A (1994) The history and geography of human genes. Princeton University Press, PrincetonGoogle Scholar
  14. Charles M (2007) East of eden? A consideration of Neolithic crop spectra in the eastern Fertile Crescent and beyond. In: Colledge S, Conolly J (eds) The origins and spread of domestic plants in Southwest Asia and Europe. Left Coast Press, California, pp 53–74Google Scholar
  15. Dorofeev VF, Filatenko AA, Migushova EF, Udaczin RA, Jakubziner MM (1979) Wheat. In: Dorofeev VF, Korovina ON (eds) Flora of cultivated plants, vol 1. Leningrad, St. Petersburg, 346 ppGoogle Scholar
  16. Dubcovsky J, Dvorak J (2007) Genome plasticity a key factor in the success of polyploid wheat under domestication. Science 316:1862–1866CrossRefPubMedGoogle Scholar
  17. Dvorak J, Akhunov E (2005) Tempos of gene locus deletions and duplications and their relationship to recombination rate during diploid and polyploid evolution in the AegilopsTriticum alliance. Genetics 171:323–332CrossRefPubMedGoogle Scholar
  18. Dvorak J, Luo MC, Yang ZL, Zhang HB (1998) The structure of the Aegilops tauschii gene pool and the evolution of hexaploid wheat. Theor Appl Genet 67:657–670CrossRefGoogle Scholar
  19. Edwards PC, Meadows J, Sayej G, Westaway M (2004) From the PPNA to the PPNB: new views from the southern Levant after excavations at Zahrat Adh-dhra’ 2 in Jordan. Paléorient 30(2):21–60CrossRefGoogle Scholar
  20. Eilam T, Anikster Y, Millet E, Manisterski J, Feldman M (2008) Nuclear DNA amount and genome downsizing in natural and synthetic allopolyploids of the genera Aegilops and Triticum. Genome 51:616–627CrossRefPubMedGoogle Scholar
  21. Fares C, Codianni P, Nigro F, Platani C, Scazzina F, Pellegrini N (2008) Processing and cooking effects on chemical, nutritional and functional properties of pasta obtained from selected emmer genotypes. J Sci Food Agric 88:2435–2444CrossRefGoogle Scholar
  22. Feldman M, Kislev EM (2007) Domestication of emmer wheat and evolution of free-threshing tetraploid wheat. Isr J Plant Sci 55:207–221CrossRefGoogle Scholar
  23. Fuller DQ (2007) Contrasting patterns in crop domestication and domestication rates: recent archaeobotanical insights from the old world. Ann Bot 100:903–924CrossRefPubMedGoogle Scholar
  24. Gebel HG (2004) There was no centre: the polycentric evolution of the Near Eastern Neolithic. Neolithics 1(04):28–32Google Scholar
  25. Giles RJ, Brown TA (2006) GluDy allele variations in Aegilops tauschii and Triticum aestivum: implications for the origins of hexaploid wheats. Theor Appl Genet 112:1563–1572CrossRefPubMedGoogle Scholar
  26. Gill BS, Appels R, Botha-Oberholster AM, Buell CR, Bennetzen JL, Chalhoub B, Chumley F, Dvorak J, Iwanaga M, Keller B, Li W, McCombie WR, Ogihara Y, Quetier F, Sasaki T (2004) A workshop report on wheat genome sequencing: international genome research on wheat consortium. Genetics 168:1087–1096CrossRefPubMedGoogle Scholar
  27. Gökgöl M (1955) Bugdaylarin Tansif Anahtari. Ziraat Vekaleti, Neşriyet ve Haberleşme Müdürlüğü, no. 716, Istanbul, TurkeyGoogle Scholar
  28. Gopher A, Abbo S, Lev-Yadun S (2001) The “when”, the “where” and the “why” of the Neolithic revolution in the Levant. Documenta Praehist 28:49–62Google Scholar
  29. Hammer K (1984) Das Domestikationssyndrom. Kulturpfl 32:11–34CrossRefGoogle Scholar
  30. Hammer K, Filatenko AA, Al-Khanjari S, Al-Maskri AY, Buerkert A (2004) Emmer (Triticum dicoccon Schrank) in Oman. Genet Resour Crop Evol 51:111–113CrossRefGoogle Scholar
  31. Harlan JR (1992) Crops and man, 2nd edn. American Society of Agronomy, Inc., MadisonGoogle Scholar
  32. Harlan JR, Zohary D (1966) Distribution of wild wheats and barley. Science 153:1074–1080CrossRefPubMedGoogle Scholar
  33. Haudry A, Cenci A, Ravel C, Bataillon T, Brunel D, Poncet C, Hochu I, Poirier S, Santoni S, David J (2007) Grinding up wheat: a massive loss of nucleotide diversity since domestication. Mol Biol Evol 24:1506–1517CrossRefPubMedGoogle Scholar
  34. Heun M, Schäfer-Pregl R, Klawan D, Castagana R, Accerbi M, Borghi B, Salamini F (1997) Site of einkorn wheat domestication identified by DNA fingerprinting. Science 278:1312–1314CrossRefGoogle Scholar
  35. Hillman GC (2000) The plant food economy of Abu Hureyra 1 and 2: Abu Hureyra 1: the Epipaleolithic. In: Moore AMT, Hillman GC, Legge AJ (eds) Village on the Euphrates: from foraging to farming at Abu Hureyra. Oxford University Press, New York, pp 327–398Google Scholar
  36. Hotelling H (1933) Analysis of a complex of statistical variables into principal components. J Educ Psychol 24:417–520CrossRefGoogle Scholar
  37. Hovsepyan R, Willcox G (2008) The earliest finds of cultivated plants in Armenia: evidence from charred remains and crop processing residues in pise from the Neolithic settlements of Aratashen and Aknashen. Veg Hist Archaeobot 17(1):63–71CrossRefGoogle Scholar
  38. Huson DH, Bryant D (2006) Application of phylogenetic networks in evolutionary studies. Mol Biol Evol 23:254–267CrossRefPubMedGoogle Scholar
  39. Jacomet S (2007) Neolithic plant economies in the northern Alpine foreland from 5500 to 3500 cal BC. In: Colledge S, Conolly J (eds) The origins and spread of domestic plants in Southwest Asia and Europe. Left Coast Press, California, pp 221–258Google Scholar
  40. Johnson BL (1975) Identification of the apparent B-genome donor of wheat. Can J Genet Cytol 17:21–39Google Scholar
  41. Jones MK (2004) Between fertile crescents: minor grain crops and agricultural origins. In: Jones MK (ed) Traces of ancestry: studies in honour of Colin Renfrew. McDonald Institute for Archaeological Research, Cambridge, pp 127–135Google Scholar
  42. Joppa LR, Nevo E, Beiles A (1995) Chromosome translocations in wild populations of tetraploid emmer wheat in Israel and Turkey. Theor Appl Genet 91:713–719CrossRefGoogle Scholar
  43. Kashkush K, Feldman M, Levy AA (2002) Gene loss, silencing and activation in a newly synthesized wheat allotetraploid. Genetics 160:1651–1659PubMedGoogle Scholar
  44. Kawahara T, Nevo E (1996) Screening of spontaneous major translocations in Israeli populations of Triticum dicoccoides Koern. Wheat Inf Serv 83:28–30Google Scholar
  45. Kawahara T, Nevo E, Beiles A (1993) Frequencies of translocations in Israel populations of Triticum dicoccoides Körn. Abstracts of the XVth International Botanical Congress, YokohamaGoogle Scholar
  46. Kilian B, Özkan H, Kohl J, von Haeseler A, Barale F, Deusch O, Brandolini A, Yucel C, Martin W, Salamini F (2006) Haplotype structure at seven barley genes: relevance to gene pool bottlenecks, phylogeny of ear type and site of barley domestication. Mol Genet Genomics 276:230–241CrossRefPubMedGoogle Scholar
  47. Kilian B, Özkan H, Deusch O, Effgen S, Brandolini A, Kohl J, Martin W, Salamini F (2007a) Independent wheat B and G genome origins in outcrossing Aegilops progenitor haplotypes. Mol Biol Evol 24:217–227CrossRefPubMedGoogle Scholar
  48. Kilian B, Özkan H, Walther A, Kohl J, Dagan T, Salamini F, Martin W (2007b) Molecular diversity at 18 loci in 321 wild and 92 domesticate lines reveal no reduction of nucleotide diversity during Triticum monococcum (einkorn) domestication: implications for the origin of agriculture. Mol Biol Evol 24:2657–2668CrossRefPubMedGoogle Scholar
  49. Kilian B, Özkan H, Pozzi C, Salamini F (2009) Domestication of the Triticeae in the fertile crescent. In: Feuillet C, Muehlbauer G (eds) Genetics and genomics of the Triticeae. Plant genetics and genomics: crops and models, vol 7. Springer, New York, pp 81–119Google Scholar
  50. Kislev ME (2002) Origin of annual crops by agro-evolution. Isr J Plant Sci 50:S85–S88CrossRefGoogle Scholar
  51. Kislev ME, Nadel D, Carmi I (1992) Epipalaeolithic (19,000 BP) cereal and fruit diet at Ohalo II. Sea of Galilee. Rev Palaeobot Palynol 73:161–166CrossRefGoogle Scholar
  52. Körnicke FA (1889) Wilde Stammformen unserer Kulturweizen. Niederrheiner Gesellsch. f. Natur- und Heilkunde in Bonn, Sitzungsber 46Google Scholar
  53. Ladizinsky G (1985) Founder effect in crop-plant evolution. Econ Bot 39:191–199CrossRefGoogle Scholar
  54. Lev-Yadun S, Gopher A, Abbo S (2000) The cradle of agriculture. Science 288:1602–1603CrossRefPubMedGoogle Scholar
  55. Lichter C (ed) (2007) Die ältesten Monumente der Menschheit. Badisches Landesmuseum Karlsruhe, K. Theiss Verlag, StuttgartGoogle Scholar
  56. Luo MC, Yang ZL, You FM, Kawahara T, Waines JG, Dvorak J (2007) The structure of wild and domesticated emmer wheat populations gene flow between them, and the site of emmer domestication. Theor Appl Genet 114:947–959CrossRefPubMedGoogle Scholar
  57. Maan SS (1973) Cytoplasmic and cytogenetic relationships among tetraploid Triticum species. Euphytica 22:287–300CrossRefGoogle Scholar
  58. Martin W, Salamini F (2000) A meeting at the gene. Biodiversity and natural history. EMBO Rep 1:208–210CrossRefPubMedGoogle Scholar
  59. Mori N, Ishii T, Ishido T, Hirosawa S, Watatani H, Kawahara T, Nesbitt M, Belay G, Takumi S, Ogihara Y, Nakamura C (2003) Origin of domesticated emmer and common wheat inferred from chloroplast DNA fingerprinting. 10th International wheat genetics symposium, 1–6 September 2003, Paestum, Italy, pp 25–28Google Scholar
  60. Morrell PL, Clegg MT (2007) Genetic evidence for a second domestication of barley (Hordeum vulgare) east of the Fertile Crescent. Proc Natl Acad Sci USA 104:3289–3294CrossRefPubMedGoogle Scholar
  61. Nadel D (2002) Ohalo II: a 23,000-year-old Fisher-Hunter-Gatherer’s Camp on the Sea of Galilee. University of Haifa, HaifaGoogle Scholar
  62. Neef R (2003) Overlooking the steppe forest: preliminary report on the botanical remains from early Neolithic Göbekli Tepe (southern Turkey). Neolithics 2(03):13–15Google Scholar
  63. Nesbitt M, Samuel D (1996) From stable crop to extinction? The archaeology and history of the hulled wheats. In: Padulosi S, Hammer K, Heller J (eds) Hulled wheats. International Plant Genetic Resources Institute, Rome, pp 41–100Google Scholar
  64. Nevo E, Beiles A (1989) Genetic diversity of wild emmer wheat in Israel and Turkey: structure, evolution, and application in breeding. Theor Appl Genet 77:421–455CrossRefGoogle Scholar
  65. Nevo E, Golenberg EM, Beiles A, Brown AHD, Zohary D (1982) Genetic diversity and environmental associations of wild wheat, Triticum dicoccoides, in Israel. Theor Appl Genet 62:241–254Google Scholar
  66. Nevo E, Beiles A, Gutterman Y, Storch N, Kaplan D (1984) Genetic resources of wild cereals in Israel and vicinity. I. Phenotypic variation within and between populations of wild wheat, Triticum dicoccoides. Euphytica 33:717–735CrossRefGoogle Scholar
  67. Nevo E, Korol AB, Beiles A, Fahima T (2002) Evolution of wild emmer and wheat improvement. Springer, BerlinGoogle Scholar
  68. Nishikawa K, Mizuno S, Furuta Y (1994) Identification of chromosomes involved translocations in wild emmer. Jpn J Genet 69:371–376CrossRefGoogle Scholar
  69. Ozbek O, Millet E, Anikster Y, Arslan O, Feldman M (2007) Spatio-temporal genetic variation in populations of wild emmer wheat, Triticum turgidum ssp. dicoccoides, as revealed by AFLP analysis. Theor Appl Genet 115:19–26CrossRefPubMedGoogle Scholar
  70. Ozkan H, Levy AA, Feldman M (2001) Allopolyploidy-induced rapid genome evolution in the wheat (AegilopsTriticum) group. Plant Cell 13:1735–1747CrossRefPubMedGoogle Scholar
  71. Ozkan H, Brandolini A, Schäfer-Pregl R, Salamini F (2002) AFLP analysis of a collection of tetraploid wheats indicates the origin of emmer and hard wheat domestication in south-east Turkey. Mol Biol Evol 19:1797–1801PubMedGoogle Scholar
  72. Ozkan H, Brandolini A, Pozzi C, Effgen S, Wunder J, Salamini F (2005) A reconsideration of the domestication geography of tetraploid wheats. Theor Appl Genet 110:1052–1060CrossRefPubMedGoogle Scholar
  73. Perrino P, Laghetti G, D’Antuono LF, Al Ajlouni M, Kanbertay M, Szabó AT, Hammer K (1996) Ecogeographical distribution of hulled wheat species. In: Padulosi S, Hammer K, Heller J (eds) Hulled wheats. International Plant Genetic Resources Institute, Rome, pp 102–118Google Scholar
  74. Poyarkova H (1988) Morphology, geography and infraspecific taxonomics of Triticum dicoccoides Körn. A retrospective of 80 years of research. Euphytica 38:11–23CrossRefGoogle Scholar
  75. Poyarkova H, Gerechter-Amitai ZK, Genizi A (1991) Two variants of wild emmer (Triticum dicoccoides) native to Israel: morphology and distribution. Can J Bot 69:2772–2789CrossRefGoogle Scholar
  76. Rees H, Walters MR (1965) Nuclear DNA and the evolution of wheat. Heredity 20:73–82CrossRefGoogle Scholar
  77. Renfrew C (2002) The emerging synthesis’: the archaeogenetics of farming/language dispersals and other spread zones. In: Bellwood P, Renfrew C (eds) Examining the farming language dispersal hypothesis. McDonald Institute for Archaeological Research, Cambridge, pp 3–16Google Scholar
  78. Salamini F, Özkan H, Brandolini A, Schäfer-Pregl R, Martin W (2002) Genetics and geography of wild cereal domestication in the Near East. Nat Rev Genet 3:429–441PubMedGoogle Scholar
  79. Salamini F, Heun M, Brandolini A, Özkan H, Wunder J (2004) Comment on “AFLP data and the origins of domesticated crops”. Genome 47:615–620CrossRefPubMedGoogle Scholar
  80. Schiemann E (1939) Gedanken zur Genzentrentheorie Vavilovs. Naturwiss 27:377–401CrossRefGoogle Scholar
  81. Schmidt K (2001) Göbekli Tepe, southeastern Turkey. A preliminary report on the 1995–1999 excavations. Paléorient 26:45–54CrossRefGoogle Scholar
  82. Schmidt K (2006) Sie bauten die ersten Tempel. Verlag CH Beck, MünchenGoogle Scholar
  83. Schweinfurth G (1908) Über die von A. Aaronsohn ausgeführten Nachforschungen nach dem wilden Emmer (Triticum dicoccoides Kcke). Ber Dtsch Bot Ges 26a:309–324Google Scholar
  84. Serpen A, Gokmen V, Karagoz A, Koksel H (2008) Phytochemical quantification and total antioxidant capacities of emmer (Triticum dicoccon Schrank) and einkorn (Triticum monococcum L.) wheat landraces. J Agric Food Chem 56:7285–7292CrossRefPubMedGoogle Scholar
  85. Shaked H, Kashkush K, Ozkan H, Feldman M, Levy AA (2001) Sequence elimination and cytosine methylation are rapid and reproducible responses of the genome to wide hybridization and allopolyploidy in wheat. Plant Cell 13:1749–1759CrossRefPubMedGoogle Scholar
  86. Stordeur D (2000) New discoveries in architecture and symbolism at Jerf el Ahmar (1997–1999 Syria). Neolithics 1:1–4Google Scholar
  87. Szabó AT, Hammer K (1996) Notes on the taxonomy of farro: Triticum monococcum, T. dicoccon and T. spelta. In: Padulosi S, Hammer K, Heller J (eds) Hulled wheats. International Plant Genetic Resources Institute, Rome, pp 2–40Google Scholar
  88. Tanaka M, Ishii H (1973) Cytogenetic evidence on the speciation of wild tetraploid wheats collected in Iraq, Turkey and Iran. Proceedings of the 4th international wheat genetics symposium, University of Missouri, pp 115–121Google Scholar
  89. Tanno K, Willcox G (2006a) How fast was wild wheat domesticated? Science 311:1886CrossRefPubMedGoogle Scholar
  90. Tanno K, Willcox G (2006b) The origins of cultivation of Cicer arietinum L. and Vicia faba L.: early finds from north west Syria (Tell el-Kerkh, late 10th millennium BP). Veg Hist Archaeobot 15:197–204CrossRefGoogle Scholar
  91. Teklu Y, Hammer K (2006) Farmers perception and genetic erosion of Ethiopian tetraploid wheat landraces. Genet Resour Crop Evol 53:1099–1113CrossRefGoogle Scholar
  92. Teklu Y, Hammer K, Röder MS (2007) Simple sequence repeats marker polymorphism in emmer wheat (Triticum dicoccon Schrank): analysis of genetic diversity and differentiation. Genet Resour Crop Evol 54:543–554CrossRefGoogle Scholar
  93. Thuillet AC, Bru D, David J, Roumet P, Santoni S, Sourdille P, Bataillon T (2002) Direct estimation of mutation rate for 10 microsatellite loci in durum wheat, Triticum turgidum (L.) Thell. ssp. durum Desf. Mol Biol Evol 19:122–125PubMedGoogle Scholar
  94. Thuillet AC, Bataillon T, Poirier S, Santoni S, David JL (2005) Estimation of long-term effective population sizes through the history of durum wheat using microsatellite data. Genetics 169:1589–1599CrossRefPubMedGoogle Scholar
  95. Valkoun J, Giles J, Waines J, Konopka J (1998) Current distribution and habitat of wild wheats and barley. In: Damania A, Valkoun J, Willcox G, Qualset C (eds) The origins of agriculture and crop domestication. ICARDA, Aleppo, pp 293–299Google Scholar
  96. van Zeist W, Bakker-Heeres JH (1982) Archaeobotanical studies in the Levant 1. Neolithic sites in the Damascus Basin: Aswad, Ghoraife, Ramad. Palaeohistoria 24:165–256Google Scholar
  97. van Zeist W, Buitenhuis H (1983) Palaeobotanical studies of Neolithic Erbaba, Turkey. Anatolica 10:47–89Google Scholar
  98. Weiss E, Kislev ME, Hartmann A (2006) Autonomous cultivation before domestication. Science 312:1608–1610CrossRefPubMedGoogle Scholar
  99. Willcox G (2005) The distribution, natural habitats and availability of wild cereals in relation to their domestication in the Near East: multiple events, multiple centres. Veg Hist Archaeobot 14:534–541CrossRefGoogle Scholar
  100. Willcox G, Fornite S, Herveux L (2008) Early Holocene cultivation before domestication in northern Syria. Veg Hist Archaeobot 17:313–325CrossRefGoogle Scholar
  101. Willcox G, Buxo R, Herveux L (2009) Late Pleistocene and early Holocene climate and the beginnings of cultivation in northern Syria. Holocene 19:151–158CrossRefGoogle Scholar
  102. Williams PC (1993) The world of wheat. In: Grains and oilseeds: handling marketing processing. Canadian International Grains Institute, Winnipe, pp 557–602Google Scholar
  103. Xie W, Nevo E (2008) Wild emmer: genetics resources, gene mapping and potential for wheat improvement. Euphytica 164:603–614CrossRefGoogle Scholar
  104. Zohary D (1969) The progenitors of wheat and barley in relation to domestication and agricultural dispersal in the Old World. In: Ucko PJ, Dimbleby GW (eds) The domestication and exploitation of plants and animals. Duckworth, LondonGoogle Scholar
  105. Zohary D (1973) The origin of cultivated cereals and pulses in the Near East. Chromosome Today 4:307–320Google Scholar
  106. Zohary D, Hopf M (2000) Domestication of plants in the Old World. Oxford University Press, OxfordGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  1. 1.Faculty of Agriculture, Department of Field CropsUniversity of ÇukurovaAdanaTurkey
  2. 2.Archéorient CNRS UMR 5133Université de Lyon IISt-Paul-le-JeuneFrance
  3. 3.Leibniz Institute of Plant Genetics and Crop Plant Research (IPK)Genebank/Genome DiversityGaterslebenGermany
  4. 4.Fondazione Parco Tecnologico PadanoLodiItaly

Personalised recommendations