Genetic Resources and Crop Evolution

, Volume 58, Issue 3, pp 347–360 | Cite as

Pattern of genetic variability of Solanum habrochaites in its natural area of distribution

  • Alicia Sifres
  • José Blanca
  • Fernando NuezEmail author
Research Article


The tomato wild relative species Solanum habrochaites (previously known as Lycopersicon hirsutum) is a potential source of novel genes for tomato breeding. It shows resistance to many diseases and pests, cold tolerance and fruit quality traits. This species inhabits the western Andean slopes at high elevations from central Ecuador to central Peru. In this study the genetic variation of S. habrochaites was studied using 91 accessions from the whole range of distribution of this species. To this end, we employed two kinds of markers: 9 SSRs and 6 AFLP combinations. The Principal Coordinate Analysis based on AFLP data showed the existence of clinal genetic variation from north to south. The accessions of the different geographic groups were sequentially arranged in the first axis from north to south and a clear separation between them was found. The groups from the centre of the area of distribution showed the highest variation and heterozygosis. The ones from the margins showed lower variability and presented higher homozygosis. The morphotypes typicum and glabratum considered by Müller constituted the extreme forms of the continuous variation in the pubescence grade. These differences in pubescence were not associated with the homozygosis grade.


Genetic variability AFLP SSR Solanum habrochaites Geographic differentiation 



We are deeply grateful to our colleagues at the Universidad Nacional de Loja, Universidad Nacional de Piura, Universidad Nacional Agraria La Molina, Universidad Nacional de Trujillo and Universidad Nacional Pedro Ruiz Gallo and to Dra. Rosa de Frutos Illán of the Universidad de Valencia for the joint collection expeditions organized throughout the years. This study would not have been possible without their technical assistance and kind affection during these expeditions. We also want to acknowledge to Roger Chetelat, the Director/Curator of the C. M. Rick Tomato Genetics Resource Centre, the kindly donation of several accessions used in this study. We want to thank Carmen Hermida for her technical assistance and dedication. We also want to recognize the invaluable task carried out by the germplasm bank of the Instituto de Conservación y Mejora de la Agrodiversidad Valenciana and the Tomato Genetic Resource Center, which provided important reference accessions.

Supplementary material

10722_2010_9578_MOESM1_ESM.pdf (33 kb)
Supplementary Material (PDF 33.1 kb)


  1. Baker HG (1955) Self-compatibility and establishment after long-distance dispersal. Evolution 9:347–348CrossRefGoogle Scholar
  2. Belkhir K, Borsa P, Chikhi L, Rafaste N, Bonhomme T (1996) Genetix 4.04 Logiciel sours Windous TM pour la genetique des populations. Laboratoire Génome, populations, interactions, Université de Montpellier II, Montpellier. Website
  3. Benham J, Jeung JU, Jasieniuk M, Kanazin V, Blake T (1999) Genographer: a graphical tool for automated fluorescent AFLP and microsatellite analysis. Department of Plant Science, Montana State University, BozemanGoogle Scholar
  4. Bernacchi D, Beck-Bunn T, Eshed Y, Lopez J, Petiard V, Uhlig J, Zamir D, Tanksley S (1998) Advanced backcross QTL analysis in tomato. I. Identification of QTLs for traits of agronomic importance from Lycopersicon hirsutum. Theor Appl Genet 97:381–397CrossRefGoogle Scholar
  5. Bornet B, Goraguer F, Joly G, Brachard M (2002) Genetic diversity in European and Argentinian cultivated potatoes (Solanum tuberosum subsp. tuberosum) detected by inter-simple sequence repeats (ISSRs). Genome 45:481–484PubMedCrossRefGoogle Scholar
  6. Bouxin G (2005) Ginkgo, a multivariate analysis package. J Veg Sci 16:355–359CrossRefGoogle Scholar
  7. Cavalli-Sforza LL, Edwards AWF (1967) Phylogenetic analysis: models and estimation procedures. Evolution 32:550–570CrossRefGoogle Scholar
  8. Coulibaly S, Pasquet R, Papa R, Gepts P (2002) AFLP analysis of the phenetic organization and genetic diversity of Vigna unguiculata L. Walp. reveals extensive gene flow between wild and domesticated types. Theor Appl Genet 104:358–366PubMedCrossRefGoogle Scholar
  9. Ercolano MR, Sebastiano A, Monti L, Frusciante L, Barone A (2005) Molecular characterization of Solanum habrochaites accessions. J Genet Breed 59:15–20Google Scholar
  10. Excoffier L, Laval G, Schneider S (2005) Arlequin (version 3.0): an integrated software package for population genetics data analysis. Evol Bioinform Online 1:47–50PubMedGoogle Scholar
  11. Felsenstein J (1993) PHYLIP (Phylogeny Inference Package) v3.69. Department of Genome Sciences and Department of Biology. University of Washington. Washington. EEUU. Website
  12. Ferriol M, Pico B, Nuez F (2003) Genetic diversity of a germplasm collection of Cucurbita pepo using SRAP and AFLP markers. Theor Appl Genet 107:271–282PubMedCrossRefGoogle Scholar
  13. Foolad MR, Merk HL, Ashrafi H (2008) Genetics, genomics and breeding of late blight and early blight resistance in tomato. Crit Rev Plant Sci 27:75–107CrossRefGoogle Scholar
  14. Gower JC (1966) Some distance properties of latent roots and vector methods used in multivariate analysis. Biometrika 53:325–338Google Scholar
  15. Guo ZH, Weston PA, Snyder JC (1993) Repellency to 2-spotted spider-mite, Tetranychus urticae Koch, as related to leaf surface-chemistry of Lycopersicon hirsutum accessions. J Chem Ecol 19:2965–2979CrossRefGoogle Scholar
  16. Kabelka E, Franchino B, Francis DM (2002) Two loci from Lycopersicon hirsutum LA407 confer resistance to strains of Clavibacter michiganensis subsp. michiganensis. Phytopathology 92:504–510PubMedCrossRefGoogle Scholar
  17. Langella O (2002) Populations 1.2.28, Population genetic software. CNRS Website
  18. Leite G, Picanco M, Guedes R, Zanuncio J (2001) Role of plant age in the resistance of Lycopersicon hirsutum f. glabratum to the tomato leafminer Tuta absoluta (Lepidoptera: Gelechiidae). Sci Hortic 89:103–113CrossRefGoogle Scholar
  19. Mantel N (1967) The detection of disease clustering and a generalized regression approach. Cancer Res 27:209–220PubMedGoogle Scholar
  20. Momotaz A, Scott JW, Schuster DJ (2005) Searching for silverleaf whitefly and begomovirus resistance genes from Lycopersicon hirsutum accession LA1777. Acta Hort 695:417–422Google Scholar
  21. Monforte A, Tanksley S (2000) Development of a set of near isogenic and backcross recombinant inbred lines containing most of the Lycopersicon hirsutum genome in a L. esculentum genetic background: a tool for gene mapping and gene discovery. Genome 43:803–813PubMedCrossRefGoogle Scholar
  22. Müller CH (1940) A revision of the genus Lycopersicon. United States Department of Agriculture. Misc Publ No 382Google Scholar
  23. Nei M (1973) Analysis of gene diversity in subdivided populations. Proc Natl Acad Sci USA 70:3321–3323PubMedCrossRefGoogle Scholar
  24. Nuez F, Prohens J, Blanca JM (2004) Relationships origin, and diversity of Galapagos tomatoes: implications for the conservation of natural populations. Am J Bot 91:86–99CrossRefGoogle Scholar
  25. Nuez F, Diez MJ, Valcarcel JV, Cebolla-Cornejo J, Perez A, Soler S, Rosello S, Adalid A, Galiana L, Sifres A, Pico B, Blanca JM, Frutos R (2008) Genetic resources of Lycopersicon at the institute for the conservation and improvement of the agrodiversity. Acta Hortic 789:293–297Google Scholar
  26. Peralta IE, Spooner DM, Knapp S (2008) The taxonomy of tomatoes: a revision of wild tomatoes (Solanum section Lycopersicon) and their outgroup relatives in sections Juglandifolium and Lycopersicoides. Syst Bot Monogr 84:1–186 + 3 platesGoogle Scholar
  27. Phillips N, Larson S, Drost D (2008) Detection of genetic variation in wild populations of three Allium species using amplified fragment length polymorphisms. HortScience 43:637–643Google Scholar
  28. Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959. Google Scholar
  29. Qian H, Ricklefs RE, White PS (2005) Beta diversity of angiosperms in temperate floras of eastern Asia and eastern North America. Ecol Lett 8:15–22CrossRefGoogle Scholar
  30. Rick CM (1982) The potential of exotic germplasm for tomato improvement. In: Vasil IK, Scowcroft WR, Frey KJ (eds) Plant improvement and somatic cell genetics. Academic Press Inc., New York, pp 1–28Google Scholar
  31. Rick CM, Fobes JF, Holle M (1977) Genetic variation in Lycopersicon pimpinellifolium: evidence of evolutionary change in mating systems. Plant Syst Evol 127:139–170CrossRefGoogle Scholar
  32. Rick CM, Fobes JF, Tanksley SD (1979) Evolution of mating systems in Lycopersicon hirsutum as deduced from genetic variation in electrophoretic and morphological characters. Plant Syst Evol 132:279–298CrossRefGoogle Scholar
  33. Sacks E, St. Clair D (1998) Variation among seven genotypes of Lycopersicon esculentum and 36 accessions of L. hirsutum for interspecific crossability. Euphytica 101:185–191CrossRefGoogle Scholar
  34. Sifres A (2003) Variabilidad de Lycopersicon spp. en su área de distribución natural influenciada por el fenómeno climatológico de “El Niño”. PhD Thesis, Universidad Politécnica de Valencia, Valencia, SpainGoogle Scholar
  35. Sifres A, Pico B, Blanca J, De Frutos R, Nuez F (2007) Genetic structure of Lycopersicon pimpinellifolium (Solanaceae) populations collected after the ENSO event of 1997–1998. Genet Resour Crop Evol 54:359–377CrossRefGoogle Scholar
  36. Smulders MJM, Bredemeijer G, Rus-Kortekaas W, Arens P, Vosman B (1997) Use of short microsatellites from database sequences to generate polymorphisms among Lycopersicon esculentum cultivars and accessions of other Lycopersicon species. Theor Appl Genet 97:264–272CrossRefGoogle Scholar
  37. Snyder JC, Guo ZH, Thacker R, Goodman J, Stpyrek J (1993) 2, 3-Dihydrofarnesoic acid, a unique terpene from trichomes of Lycopersicon hirsutum, repels spider-mites. J Chem Ecol 19:2981–2997CrossRefGoogle Scholar
  38. Vavilov NI (1927) Geographical regularities in the distribution of the genes of cultivated plants. Bull Appl Bot Genet Plant Breed 17:411–428Google Scholar
  39. Vidavsky F, Czosnek H (1998) Tomato breeding lines resistant and tolerant to tomato yellow leaf curl virus issued from Lycopersicon hirsutum. Phytopathology 88:910–914PubMedCrossRefGoogle Scholar
  40. Weigend M (2002) Observations on the biogeography of the Amotape-Huancabamba Zone in northern Peru. Bot Rev 68:38–54CrossRefGoogle Scholar
  41. Weir BS, Cockerham CC (1984) Estimating F-statistics for the analysis of population structure. Evolution 38:1358–1370CrossRefGoogle Scholar
  42. Yeh FC, Yang RC, Boyle TBJ, Ye ZH, Mao JX (1997) POPGENE, the user-friendly shareware for population genetic analysis. Molecular Biology and Biotechnology Centre, University of Alberta, Alberta.
  43. Young KR, Reynel C (1997) Huancabamba region, Perú and Ecuador. In: Davis SD, Heywood VH, Herrera-MacBryde O, Villa-Lobos J, Hamilton AC (eds) Centres of plant diversity: a guide and strategy for their conservation, 3: North America, Middle America, South America, Caribbean Island. IUCN, CambridgeGoogle Scholar
  44. Zuriaga E, Blanca J, Nuez F (2009a) Classification and phylogenetic relationships in Solanum section Lycopersicon based on AFLP and two nuclear gene sequences. Genet Resour Crop Evol 56:663–678CrossRefGoogle Scholar
  45. Zuriaga E, Blanca J, Cordero L, Sifres A, Blas-Cerdan W, Morales R (2009b) Genetic and bioclimatic variation in Solanum pimpinellifolium. Genet Resour Crop Evol 56:39–51CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  1. 1.Instituto de Conservación y Mejora de la Agrodiversidad Valenciana (COMAV)Universidad Politécnica de ValenciaValenciaSpain

Personalised recommendations