Genetic Resources and Crop Evolution

, Volume 57, Issue 6, pp 937–962 | Cite as

Cultivated emmer wheat (Triticum dicoccon Schrank), an old crop with promising future: a review

  • Maria Zaharieva
  • Negash Geleta Ayana
  • Amin Al Hakimi
  • Satish C. Misra
  • Philippe Monneveux
Notes on Neglected and Underutilized Crops

Abstract

Cultivated emmer wheat, Triticum dicoccon Schrank, a tetraploid species with hulled grain, has been largely cultivated during seven millennia in the Middle-East, Central and West Asia, and Europe. It has been largely replaced by hulless species and is now a minor crop, with the exception of some countries like India, Ethiopia and Yemen, where its grain is used for preparing traditional foods. Nutritional qualities and specific taste and flavor of emmer wheat products have led to a recent development of the cultivation in some European countries. Emmer wheat also possesses valuable traits of resistance to pests and diseases and tolerance to abiotic stresses and is increasingly used as a reservoir of useful genes in wheat breeding. In the present article, a review concerning taxonomy, diversity and history of cultivation of emmer wheat is reported. Grain characteristics and valuable agronomic traits are described. Some successful examples of emmer wheat utilization for the development of durum or bread wheat cultivars are examined, and the perspectives in using emmer wheat as health food and for the development of new breeding germplasm are discussed.

Keywords

Breeding Distribution Diversity Emmer wheat Nutritional value Triticum dicoccon 

References

  1. Abdel-Aal ESM, Sosulski FW, Hucl P (1998) Origins, characteristics and potentials of ancient wheats. Cereal Foods World 43:708–715Google Scholar
  2. Al Hakimi A (1998) Primitive tetraploid wheat species to improve drought resistance in durum wheat (Triticum durum Desf.). In: Jaradat AA (ed) Triticeae III symposium. Science Publisher Inc., USA, pp 305–312Google Scholar
  3. Al Hakimi A (1999) An integrated approach for enhancing drought tolerance of wheat in Yemen. Yemeni J Sci 1(1):25–35Google Scholar
  4. Al Hakimi A (2000) Evaluation of genetic variation for traits related to drought tolerance in wheat species. Yemeni J Agric Res 13:37–49Google Scholar
  5. Al Hakimi A, Monneveux P (1997) Utilization of ancient tetraploid wheat species for drought tolerance in durum wheat (Triticum durum Desf.). In: Damania AB, Valkoun J, Willcox G, Qualset CO (eds) The origins of agriculture and crop domestication. ICARDA, Aleppo, pp 273–279Google Scholar
  6. Al Hakimi A, Qubati A, Sharaf S, Dael M, Al Samawi A, Anhar Y, Pelat F (2008) Final technical report project: health and dietary diversity in Yemen. Traditional Yemeni rural diets and local food systems: enhancing contributions to health and the environment. IDRC Grant Number: 103153-001Google Scholar
  7. Al Khanjari S, Hammer K, Buerkert A, Röder MS (2007) Molecular diversity of Omani wheat revealed by microsatellites: I. Tetraploid landraces. Genet Resour Crop Evol 54:1291–1300Google Scholar
  8. Ammerman AJ, Cavalli-Sforza LL (1984) The neolithic transition and the genetics of populations in Europe. Princeton University Press, Princeton, NJGoogle Scholar
  9. Amouretti MC (1986) Le pain et l’huile dans la Grèce antique: de l’araire au moulin. Annales Littéraires de l’Université de Besançon 328. Les Belles Lettres, Paris (in French)Google Scholar
  10. Annapurna K (2000) Comparative study on protein and storage quality of supplemented uppuma of dicoccum and durum wheat. MSc Thesis, Univ of Agric Sci DharwadGoogle Scholar
  11. Asfaw Z (1990) An ethnobotanical study of barley in the central highlands of Ethiopia. Biol Zent Bl 109:51–62Google Scholar
  12. Ataullah M (1963) Genetics of rust-resistance in tetraploid wheats: I. Probable genotype of Khapli emmer, a valuable source of rust-resistance. Crop Sci 3:113–116Google Scholar
  13. Bakels CC (1978) Four Linearbandkeramik settlements and their environment: a paleoecological study of Sittard, Stein, Elsloo and Hienheim. Leiden University Press, Leiden 244Google Scholar
  14. Bakels CC, Rousselle R (1985) Restes botaniques et agriculture du néolithique ancien en Belgique et aux Pays Bas. Helinium 25:37–57 (in French)Google Scholar
  15. Bakhteev FH (1988) Nicolai Ivanovich Vavilov. Nauka, Novosibirsk 271Google Scholar
  16. Bakkevig S (1982) Faggrenser bryte, pp 33–40 (in Norwegian)Google Scholar
  17. Bareš I, Vlasák M, Stehno Z, Dotlačil L, Faberová I, Bartoš P (2008) 50 let studia genofondu pšenice (rodu Triticum L.) ve Výzkumném ústavu rostlinné výroby v Praze-Ruzyni. In: Genetické zdroje č. 86”, VÚRV Praha, pp 43–57 (in Czech)Google Scholar
  18. Barker G (1985) Prehistoric farming in Europe. Cambridge University Press, CambridgeGoogle Scholar
  19. Bekele E (1984) Analysis of regional patterns of phenotypic diversity in the Ethiopian tetraploid and hexaploid wheats. Hereditas 100:119–134Google Scholar
  20. Bennett FGA (1984) Resistance to powdery mildew in wheat: a review of its use in agriculture and breeding programmes. Plant Pathol 33(3):279–300Google Scholar
  21. Beteselassie N, Fininsa C, Badebo A (2007) Sources of resistance to stem rust (Puccinia graminis f. sp. tritici) in Ethiopian tetraploid wheat accessions. Genet Resour Crop Evol 54:337–343Google Scholar
  22. Bhagwat MD, Misra SC, Honrao BK, Dixit RN, Rao VS (2002) Evaluation of Triticum dicoccum germplasm for yield and rust resistance. J Maharashtra Agric Univ 27(2):204–205Google Scholar
  23. Bhagwat MD, Oak MD, Gandhi SS, Chavan SS, Rao VS (2006) Alternative dwarfing genes for improvement of dicoccum wheats. In: Abstracts BARC golden jubilee and DAE-BRNS life science symposium on “trends in research and technologies in agriculture and food sciences”, Mumbai, Bhabha Atomic Research Centre, India, 18–20 Dec 2006Google Scholar
  24. Bhatia GS (1938) A new variety of ‘Khapli emmer’ wheat from India, and its bearing upon the place of origin of emmer wheats. J Genetics 35(3):321–329Google Scholar
  25. Blanco A, Giorgi B, Perrino P, Simeone R (1990) Genetic resources and breeding for improved quality in durum wheat. Agricoltura Ricerca 12:41–58Google Scholar
  26. Boguslavskij RL, Golik OV, Tkachenko TT (2000) Cultivated emmer is a valuable germplasm for durum wheat breeding. In: Royo C, Nachit MM, Di Fonzo N, Araus JL (eds) Durum wheat improvement in the Mediterranean region: new challenges. Options Mediterranéennes, pp 125–127Google Scholar
  27. Borojević S (1956) A note about the new dates for recent cultivation of Triticum monococcum and Triticum dicoccum in Yugoslavia. Wheat Inf Service 4:1Google Scholar
  28. BOSTID (Board on Science and Technology for International Development) (1996) Lost crops of Africa, vol. I Grains. The National Academy of Science. National Academic Press, Washington DCGoogle Scholar
  29. Bowman AK (1990) Egypt after the Pharaohs. Oxford University Press, OxfordGoogle Scholar
  30. Braidwood L, Braidwood R (1983) Prehistoric archeology along the hilly flanks, vol 103. University of Chicago Oriental Institute Publications, ChicagoGoogle Scholar
  31. Braun T (1995) Barley cakes and emmer bread. In: Wilkins J, Harvey D, Dobson M (eds) Food in Antiquity. University of Exeter Press, Exeter, pp 25–37Google Scholar
  32. Briggle LW (1966) Transfer of resistance to Erysiphe graminis f. sp. tritici from Khapli emmer and Yuma durum to hexaploid wheat. Crop Sci 6:459–461Google Scholar
  33. Burenhult G (1980) The archaeological excavation at Carrowmore, excavation seasons 1977–79. Co. Sligo, IrelandGoogle Scholar
  34. Buvaneshwari G, Yenagi NB, Hanchinal RR, Naik RK (2003) Glycaemic responses to dicoccum products in the dietary management of diabetes. Ind J Nutr Dietet 40:363–368Google Scholar
  35. Buvaneshwari G, Yenagi NB, Hanchinal RR (2005) Pasta making and extrusion qualities of dicoccum wheat varieties. J Food Sci Technol 42(4):314–317Google Scholar
  36. Capocchi A, Fontanini D, Muccilli V, Cunsolo V, Saviozzi F, Saletti R (2005) NsLTP1 and NsLTP2 isoforms in soft wheat (Triticum aestivum cv. Centauro) and farro (Triticum dicoccon Schrank). Bran J Agric Food Chem 53:7976–7984Google Scholar
  37. Castagna R, Porfiri O, D’Antuono LF, Errani M, Mazzocchetti A, Codianni P (1995) Genotipi di farro a confronto. Informatore Agrario 38:55–59 (in Italian)Google Scholar
  38. Charles M, Hillman GC (1992) Crop husbandry in a desert environment: evidence from the charred plant macro-remains. In: Masson VM (ed) New research at the Jeitun settlement. Academy of Sciences of Turkmenistan, Ashkabad, pp 83–94 (in Russian)Google Scholar
  39. Chu CG, Friesen TL, Faris JD, Xu SS (2008) Evaluation of seedling resistance to tan spot and Stagonospora nodorum blotch in tetraploid wheat. Crop Sci 48:1107–1116Google Scholar
  40. Ciferri R, Bonvicini M (1959) Revisione delle vecchie razze italiane in rapporto ai frumenti mediterranei. Ann Sper Agr no 13, Roma (in Italian)Google Scholar
  41. Codianni P, Galterio G, Pogna E, Di Fonzo N (2000) Mosé e Padre Pio due nuovi genotipi di farro (Triticum dicoccum Schübler). Informatore Agrario 24:37–38 (in Italian)Google Scholar
  42. Corazza L, Pasquini M, Perrino P (1986) Resistance to rusts and powdery mildew in some strains of Triticum monococcum L. and Triticum dicoccum Schübler cultivated in Italy. Genetica Agraria 40:243–254Google Scholar
  43. Costantini L (1984) The beginnings of agriculture in the Kachi plain: the evidence of Mehrgarh. In: Allchin B (ed) South-Asian archaeology. Cambridge University Press, Cambridge, pp 29–33Google Scholar
  44. Costantini L (1989) Plant exploitation at Grotta dell’Uzzo, Sicily: new evidence for the transition from Mesolithic to Neolithic subsistence in southern Europe. In: Harris DR, Hillman GC (eds) Foraging and farming: the evolution of plant exploitation. Unwin Hyman, LondonGoogle Scholar
  45. Courtin J, Erroux J (1974) Aperçu sur l’agriculture préhistorique dans le Sud-Est de la France. Bulletin de la Société préhistorique française. Etudes et travaux 71(1):321–333 (in French)Google Scholar
  46. Crawford DJ (1979) Food: tradition and change in Hellenistic Egypt. World Archaeology 11(2):136–146PubMedGoogle Scholar
  47. Cubadda R, Marconi E (1994) Aspetti relativi all’utilizzazione e alla caratterizzazione tecnologica e nutrizionale del farro. In: Perrino P, Semeraro D, Laghetti G (eds) Il farro un cereale della salute. CNR, Istituto del Germoplasma, Bari, pp 82–88 (in Italian)Google Scholar
  48. Cubadda R, Marconi E (1996) Technological and nutritional aspects in emmer and spelt. In: Padulosi S, Hammer K, Heller J (eds) Hulled wheats, promoting the conservation and used of underutilized and neglected crops. Proceedings of the first international workshop on hulled Wheats. IPGRI, Rome, pp 203–211Google Scholar
  49. D’Andrea CA, Haile M (2002) Traditional emmer processing in Highland Ethiopia. J Ethnobiol 22:179–217Google Scholar
  50. D’Antuono LF (1993) Production and utilization of traditional and new specialist crops in Italy. In: Marshall G, Svoboda K (eds) The production and impact of specialist minor crops in the rural community commission of the European Communities, pp 39–58Google Scholar
  51. D’Antuono LF (1994) Obsolete wheats in Italy: an overview on cultivation, use and perspectives for their conservation. In: Padulosi S, Ager H, Frison E (eds) Report of the IPGRI workshop on conservation and use of underutilized Mediterranean species. IPGRI, Rome, pp 41–48Google Scholar
  52. D’Antuono LF (1995) Evoluzione del mercato del farro e salvaguardia della tipicita. Informatore Agrario 38:47–52 (in Italian)Google Scholar
  53. D’Antuono LF, Pavoni A (1993) Phenology and grain growth of Triticum dicoccum and T. monococcum from Italy. In: Damania AB (ed) Biodiversity and wheat improvement. Wiley, UK, pp 273–286Google Scholar
  54. Damania AB (1998) Domestication of cereal crop plant and in situ conservation of their genetic resources in the Fertile Crescent. In: Damania AB, Valkoun J, Willcox G, Qualset CO (eds) The origin of agriculture and crop domestication. ICARDA, Aleppo, pp 307–316Google Scholar
  55. Damania AB, Srivastrava JP (1990) Genetic resources for optimal input technology. ICARDA’s perspectives. In: El-Bassam N, Dambrot M, Loughman BC (eds) Genetic aspects of plant mineral nutrition. Kluwer, Dordrecht, pp 425–430Google Scholar
  56. Damania AB, Pecetti L, Jana S (1990) Evaluation for useful genetic traits in primitive and wild wheats. In: Srivastava JP, Damania AB (eds) Wheat genetic resources: meeting diverse needs. Wiley, Chichester, pp 57–64Google Scholar
  57. Damania AB, Hakim S, Moualla MY (1992) Evaluation of variation in T. dicoccum for wheat improvement in stress environment. Hereditas 116:163–166Google Scholar
  58. De Moulin D (1993) Les restes des plantes carbonisées de Cafer Höyük. Cahiers de l’Euphrate 7:191–234 (in French)Google Scholar
  59. De Vita P, Riefolo C, Codianni P, Cattivelli L, Fares C (2006) Agronomic and qualitative traits of T. turgidum ssp. dicoccum genotypes cultivated in Italy. Euphytica 150:195–205Google Scholar
  60. Dedkova OS, Badaeva ED, Mitrofanova OP, Bilinskaya EN, Pukhalskiy VA (2007) Analysis of intraspecific diversity of cultivated emmer Triticum dicoccum (Schrank.) Schübl. using C-banding technique. Genetika 43:1517–1533PubMedGoogle Scholar
  61. Degaonkar A, Tamhankar S, Rao V (2005) An assessment of cultivated emmer germplasm for gluten proteins. Euphytica 145(1–2):49–55Google Scholar
  62. Demissie A, Hailegiorgis M (1985) “Belg” collecting in Bale administrative region. PGRC/E-ILCA Germplasm Newsletter 10:6–11Google Scholar
  63. Denaiffe H, Denaiffe M, Colle-Denaiffe J, Sirodot E (1928) Les blés cultivés. Graineterie Denaiffe et fils, Carignan, p 315 (in French)Google Scholar
  64. Dhaliwal HS (1977) Genetic control of seed proteins in wheat. Theor Appl Genet 50:235–239Google Scholar
  65. Dorofeev VF, Filatenko AA, Migushova EF, Udachin RA, Jakubziner MM (1979) Wheat. In: Dorofeev VF, Korovina ON (eds) Flora of cultivated plants, vol 1. Kolos, Leningrad, p 346Google Scholar
  66. Dorofeev VF, Udachin RA, Semenova LV, Novikova MV, Grazhdaninova OD, Shitova IP, Merezhko AF, Filatenko AA (1987) World wheat. Agropromizdat, Leningrad, p 560 (in Russian)Google Scholar
  67. Dreisigacker S, Kishii M, Lage J, Warburton M (2008) Use of synthetic hexaploid wheat to increase diversity for CIMMYT bread wheat improvement. Aust J Agric Res 59:413–420Google Scholar
  68. Drenkhahn R (1975) Brot. In: Helck W, Otto E (eds) Lexikon der Ägyptologie. A-Ernte, vol 1. Otto Harrassowitz, Wiesbaden, 871 pGoogle Scholar
  69. Eticha F, Belay G, Bekele E (2006) Species diversity in wheat landrace populations from two regions of Ethiopia. Gen Res Crop Evol 53:387–393Google Scholar
  70. Fairweather A, Ralston IBM (1993) The Neolithic timber hall at Balbridie, Grampian Region, Scotland: the building, the date, the plant macrofossils. Antiquity 67:313–323Google Scholar
  71. Feldman M (1979) Wheats (Triticum spp.). In: Simmonds NW (ed) Evolution of crop plants. Longman Group Limited, London, pp 120–128Google Scholar
  72. Filatenko AA, Boguslavskij RL, Sergeeva AT, Chmelewa ZV, Gasrataliev GS (1983) Groat features of emmer Triticum dicoccum (Schrank) Schuebl. Research Bulletin of the NI Vavilov Institute of Plant Industry 129:22–26 (in Russian)Google Scholar
  73. Flaksberger CA (1925) Pshenitsa odnozernyahki (wheat-einkorn). Trudy po Prikladnoi Botanike i Selektsii 15(1):207–227 (in Russian)Google Scholar
  74. Follieri M (1982) Le piu antiche testimonianze dell’agricoltura neolitica in Italia meridionale. Origini 77:337–344 (in Italian)Google Scholar
  75. Gadea M (1954) Trigos españoles. INIA, Madrid 450Google Scholar
  76. Gasrataliev GS (1982) Forms of T. dicoccum promising from southern Dagestan. Bulletin of the N. I. Vavilov Institute of Plant Industry 118:5–8 (in Russian)Google Scholar
  77. Gasrataliev GS (1983) Resistance in emmer specimens to powdery mildew, brown and yellow rusts. Bull. N.I. Vauiiou Imt. Plant Ind., Leningrad 129:70–71 (in Russian)Google Scholar
  78. Geleta N, Eticha F, Grausgruber H (2009) Preservation of tetraploid wheat landraces in the west-central highlands of Ethiopia. In: Splechtna BE (ed) Proceedings of the international symposium: preservation of bio-cultural diversity, a global issue. Boku University, Vienna, pp 91–98Google Scholar
  79. Genc Y, MacDonald GK (2008) Domesticated emmer wheat [T. turgidum L. subsp. dicoccon (Schrank) Thell.] as a source for improvement of zinc efficiency in durum wheat. Plant Soil 310:67–75Google Scholar
  80. Gökgöl M (1939) Türkiye’ninbugdaylari V II: (Wheats of Turkey). Yesliköy Islah Enstitüsü Yayim no 14, Istanbul (in Turkish)Google Scholar
  81. Gosh A (1989) An encyclopedia of Indian archaeology. Munshiram Masnoharlal, New DelhiGoogle Scholar
  82. Grausgruber H, Sailer C, Ghambashidze C, Bolyos L, Ruckenbauer P (2004) Genetic variation in agronomic and qualitative traits of ancient wheats. In: Vollmann J, Grausgruber H, Ruckenbauer P (eds) Genetic variation for plant breeding. Eucarpia and Boku, Vienna, pp 19–22Google Scholar
  83. GRIN (2009) USDA, ARS, National Genetic Resources Program. Germplasm Resources Information Network—(GRIN). [online database] National Germplasm Resources Laboratory, Beltsville, Maryland. Available: http://www.ars-grin.gov/cgi-bin/npgs/acc/search.pl?accid=PI+94671 (14 Oct 2009)
  84. Guarino L (1990) Crop collecting in the sultanate of Oman in the context of the Arabian Peninsula. FAO/IBPGR Plant Genet Res Newsletter 77:27–33Google Scholar
  85. Hailu F, Merker A (2008) Variation in gluten strength and yellow pigment in Ethiopian tetraploid wheat germplasm. Genet Resour Crop Evol 55:277–285Google Scholar
  86. Hammer K, Perrino P (1984) Further information on farro (Triticum monococcum L. and T. dicoccon Schrank) in South Italy. Kulturpflanze 32:143–151Google Scholar
  87. Hammer K, Perrino P (1995) Plant genetic resources in South Italy and Sicily: studies towards in situ and on farm conservation. Plant Genet Res Newsletter 103:19–23Google Scholar
  88. Hammer K, Filatenko AA, Al Khanjari S, Al-Maskri A, Buerkert A (2004) Emmer (Triticum dicoccon Schrank) in Oman. Genet Resour Crop Evol 51:111–113Google Scholar
  89. Hammer K, Gebauer J, Al Khanjari S, Buerkert A (2009) Oman at the cross-road of inter-regional exchange of cultivated plants. Genet Resour Crop Evol 56:547–560Google Scholar
  90. Hanchinal RR, Yenagi NB, Bhuvaneswari G, Math KK (2005) Grain quality and value addition of emmer wheat. University of Agricultural Sciences Dharwad, Dharwad 63Google Scholar
  91. Handelman GJ (2001) The evolving role of carotenoids in human biochemistry. Nutrition 17:818–822PubMedGoogle Scholar
  92. Hanelt P, Hammer K (1975) Bericht über einer Reise nach Ostmähren und der Slowakei 1974 zur Sammlung autochthoner Sippen von Kulturpflanzen. Kulturpflanze 23:207–215 (in German)Google Scholar
  93. Harlan JR (1955) Crops, weeds, and revolution. Scientific Monthly 80:299–303Google Scholar
  94. Harris DR, Masson VM, Berezin YE, Charles MP, Gosden C, Hillman GC, Kasparov AK, Korobkova GF, Kurbansakhatov K, Legge AJ, Limbrey S (1993) Investigating early agriculture in Central Asia: new research at Jeitun, Turkmenistan. Antiquity 67(255):324–338Google Scholar
  95. Hartyáni B, Nováki G (1975) Samen- und Fruchtfunde in Ungarn von der Neusteinzeit bis zum 18. Jahrhundert. Agrártörténeti Szemle 17:1–22 (in German)Google Scholar
  96. Heermann RM (1960) Inheritance of stem rust reaction in tetraploid wheat hybrids: II. Genes for resistance to race 15B from Khapli emmer. Agron J 52:107–110Google Scholar
  97. Heermann RM, Stoa TE (1956) New durum wheats resistant to 15B. North Dakota Agric. Exp Stn Farm Research 18:75–81Google Scholar
  98. Helbaek H (1952) Early crops in southern England. Proc Prehistoric Soc 18:194–233Google Scholar
  99. Helbaek HH (1969) Plant collecting, dry-farming and irrigation agriculture in prehistoric Deh Luran. In: Hole F, Flannery KV, Neely JA (eds) Prehistory and human ecology of the Deh Luran plain. An early village sequence from Khuzistan. Memoirs Museum Anthropology no 1, University of Michigan, Ann ArborGoogle Scholar
  100. Helbaek HH (1970) The plant husbandry of Haçilar. In: Mellaart J (ed) Excavations at Haçilar. Edinburgh University Press, Edinburgh, pp 189–244Google Scholar
  101. Hermsen JGT (1966) Hybrid necrosis and red chlorosis in wheat. Hereditas 2:439–452Google Scholar
  102. Hermsen JGT, Waninge J (1972) Attempts to localize the gene Ch 1 for hybrid chlorosis in wheat. Euphytica 21:204–208Google Scholar
  103. Heyne EG (1962) Registration of improved wheat varieties. Crop Sci 2:353–354Google Scholar
  104. Hjelmqvist H (1966) Some notes on the old wheat species of Gotland. Hereditas 56:382–393Google Scholar
  105. Hjelmqvist H (1979) Beiträge zur Kenntnis der prähistorischen Nutzpflanzen in Schweden. Opera Bot 47:1–58 (in German)Google Scholar
  106. Hopf M (1981) Pflanzliche Reste aus Zambujal. In: Sangsmeister E, Schubart H (eds) Zambujal, die Grabungen 1964 bis 1973. Madrider Beiträge, Mainz, pp 315–340 (in German)Google Scholar
  107. Hopf M (1983) The plants found at Jericho. In: Kenyon KM, Holland TA (eds) Excavations in Jericho. British School of Archeology in Jerusalem, London, pp 580–621Google Scholar
  108. Hopf M, Schubart H (1965) Getreidefunde aus der Coveta de L’Or (prov. Alicante). Madrider Mitteilungen 6:20–38 (in German)Google Scholar
  109. Howard A, Howard GLC (1910) Wheat in India: its production, varieties and improvement. Imperial Department of Agriculture in India, CalcuttaGoogle Scholar
  110. Hughes DA (2001) Dietary carotenoids and human immune function. Nutrition 17:823–827PubMedGoogle Scholar
  111. Humphries CJ (1980) Triticum L. In: Tutin TG, Heywood VH, Burgess NA, Moore DM, Valentine DH, Walters SM, Webbs DA (eds) Flora Europea vol. 5, Alismataceae to Orchidaceae. Cambridge University Press, Cambridge, pp 202–203Google Scholar
  112. Hunshal CS, Balikai RB, Viswanath DP (1990) Triticum dicoccum. Its performance in comparison with barley under salinity. J Maharashtra Agric Univ 15(3):376–377Google Scholar
  113. Italiano M, De Pasquale A (1994) Il farro: nuove acquisizioni in ambito preventivo e terapeutico. In: Perrino P, Semeraro D, Laghetti G (eds) Il Farro: un cereale della salute. Proceedings of the Congress, Potenza, pp 67–81 (in Italian)Google Scholar
  114. Jacomet S, Brombacher C, Dick M (1989) Archäobotanik am Zürichsee. Berichte der Züricher Denkmalpflege. Monographien 7, Orell Füssli, ZürichGoogle Scholar
  115. Jakubziner MM (1969) Immunity of different wheat species. Agricultural Biology 4:837–847 (in Russian)Google Scholar
  116. Janushevich ZV (1984) The specific composition of wheat finds from ancient agricultural centres in the USSR. In: van Zeist W, Casparie WA (eds) Plants and ancient man. Balkema AA, Rotterdam, pp 267–276Google Scholar
  117. Jasny N (1942) Competition among grains in classical antiquity. Am Historical Rev 47:747–764Google Scholar
  118. Jenkins DJA, Wolever TMS, Thorme MJ (1984) The relationship between glycaemic responses, digestibility and factors influencing habits of diabetes. Am J Clin Nutri 40:1175–1191Google Scholar
  119. Jensen J (1992) The Prehistory of Denmark. Routledge, UK 331Google Scholar
  120. Kajale MD (1991) Current status of Indian palaeoethnobotany: introduced and indigenous food plants with a discussion of the historical and evolutionary development of Indian agriculture and agricultural systems in general. In: Renfrew JM (ed) New light on early farming: recent developments in palaeoethnobotany. Edinburgh University Press, Edinburgh, pp 155–189Google Scholar
  121. Karagöz A (1996) Agronomic practices and socioeconomic aspects of emmer and einkorn cultivation in Turkey. In: Padulosi S, Hammer K, Heller J (eds) Hulled wheats, promoting the conservation and used of underutilized and neglected crops. IPGRI, Rome, pp 172–177Google Scholar
  122. Kavita DS (1999) Suitability of dicoccum wheat pasta as carbohydrate loading for long distance. MSc Thesis, University of Agricultural Sciences, DharwadGoogle Scholar
  123. Kemp BJ (1989) Ancient Egypt. Anatomy of a civilization, RoutledgeGoogle Scholar
  124. Kipfer BA (2000) Encyclopedic dictionary of archeology. Kluwer Academic Press, New YorkGoogle Scholar
  125. Kochumadhavan M, Tomar SMS, Nambisan NN, Ramanujam S (1984) Hybrid necrosis in Indian varieties of Triticum dicoccum Schübl. Euphytica 33:853–858Google Scholar
  126. Konvalina P, Moudrý J (2007) Volba odrůdy, struktura pěstování a výnosu hlavních obilnin v ekologickém zemědělství. In: Sborník konference Ekologické zemědělství 6–7 Feb 2007. Česká Zemědělská Univerzita, Praha, pp 67–69 (in Czech)Google Scholar
  127. Krasnodar Lukyanenko Research Institute of Agriculture (2008) Cultivars, hybrids and crop technologies. Edvi, Krasdonar, p 144 (in Russian)Google Scholar
  128. Krivchenko VI (1984) Ustoichivost zernovykh kolosovykh k vozbuditilyam golovnevykh (Resistance of the small grains to smut diseases). Kolos Publ, Moscow, 304 p (in Russian)Google Scholar
  129. Kroll H (1981) Thessalische Kulturpflanzen. Archeo-Physika 8:173–189 (in German)Google Scholar
  130. Kuckuck H, Schiemann E (1957) Über das Vorkommen von Speltz und Emmer (Triticum spelta L. und T. dicoccum Schübl.) im Iran. Z Pflanzenzüchtung 38:383–396 (in German)Google Scholar
  131. Kühn F (1970) Das Ausklingen der Emmerkultur in der Tschechoslowakei. Acta Univ Agric Fac Agron 18(4):587–594 (in German)Google Scholar
  132. Kühn F, Hammer K, Hanelt P (1976) Botanische Ergebnisse einer Reise in die CSSR 1974 zur Sammlung autochthoner Landsorten von Kulturpflanzen. Kulturpflanze 24:283–347 (in German)Google Scholar
  133. Küster H (1985) Neolithische Pflanzenreste aus Hochdorf, Gemeinde Eberdingen (Kreis Ludwigsburg). In: Küster H, Körber-Grohne U (eds) Hochdorf I. Forschungen und Berichte zur Vor- und Frühgeschichte in Baden-Württemberg 19. Konrad Theiss, Stuttgart, pp 15–83 (in German)Google Scholar
  134. Lage J, Skovmand B, Andersen SB (2003) Characterization of greenbug (Homoptera: Aphididae) resistance in synthetic hexaploid wheats. J Econ Entomol 90(6):1922–1928Google Scholar
  135. Lage J, Skovmand B, Andersen SB (2004) Field evaluation of emmer wheat-derived synthetic hexaploid wheat for resistance to Russian wheat aphid (Homoptera: Aphididae). J Econ Entomol 97(3):1065–1070PubMedGoogle Scholar
  136. Lage J, Skovmand B, Peña RJ, Andersen SB (2006) Grain quality of emmer derived synthetic hexaploid wheats. Genet Resour Crop Evol 53:955–962Google Scholar
  137. Laghetti G, Piergiovanni AR, Volpe N, Falivene M, Basile M, Semeraro D, Perrino P (1997) Il farro: un’alternativa per la cerealicoltura della Basilicata. Inf Agric LIII(40):105–108 (in Italian)Google Scholar
  138. Laghetti G, Piergiovanni AR, Perrino P, Blanco A (1998) Agronomic and nutritional characteristics in emmer and spelt. In: Proceedings of 9th international wheat genetic symposium, Saskatoon, pp 270–272Google Scholar
  139. Laghetti G, Fiorentino G, Hammer K, Pignone D (2009) On the trail of the last autochthonous Italian einkorn (Triticum monococcum L.) and emmer (Triticum dicoccon Schrank) populations: a mission impossible? Genet Resour Crop Evol 56:1163–1170Google Scholar
  140. Lange-de la Camp M (1939) Die Weizen der deutschen Hindukush-Expedition 1935. Landwirtschaftliche Jahrbücher 88:14–133 (in German)Google Scholar
  141. Le Clerc JA, Bailey LH, Wessling HL (1918) Milling and baking tests of einkorn, emmer, spelt and polish wheat. J Am Soc Agron 10:215–217Google Scholar
  142. Lebsock KL, Gough FJ, Sibbitt LD (1967) Registration of ‘Leeds’ durum wheat. Crop Sci 7:169–170Google Scholar
  143. Lein A (1949) Asiatische Weizensortimente. Kühn-Archiv 62:216–310 (in German)Google Scholar
  144. Leornard WH, Martin JH (1968) Cereal Crops. MacMillan Company, New YorkGoogle Scholar
  145. Lisitsina GN (1984) The Caucasus, a centre of ancient farming in Eurasia. In: van Zeis W, Casparie WA (eds) Plants and Ancient Man. Balkema, Rotterdam, pp 285–292Google Scholar
  146. Lityńska-Zajác M (1997) Roślinność i gospodarka rolna w okresie rzymskim. Studium archeobotaniczne, Kraków (in Polish)Google Scholar
  147. Liu XM, Smith CM, Friebe BR, Gill BS (2005) Molecular mapping and allelic relationships of Russian wheat aphid–resistance genes. Crop Sci 45:2273–2280Google Scholar
  148. Luo MC, Young ZL, Kawahara T, You F, Waines JG, Dvorak J (2007) The structure of wild and domesticated emmer wheat populations, gene flow between them, and the site of emmer domestication. Theor Appl Genet 114:947–959PubMedGoogle Scholar
  149. Mani BR (2004) Further evidence on Kashmir Neolithic in the light of recent excavations at Kanishkapura. JISHA 1:137–143Google Scholar
  150. Mariani G, Belocchi A, Bravi R, Bernardi G (1992a) Risultati di prove su farro condotte in Garfagnana. Informatore Agrario 37:67–71 (in Italian)Google Scholar
  151. Mariani G, Belocchi A, Colonna M (1992b) Colture miste farro-spelta e comportamento di differenti tipi di farro in tre ambienti. Informatore Agrario 37:72–76 in ItalianGoogle Scholar
  152. Marinova E (2007) Archaeobotanical data from the early Neolithic of Bulgaria. In: Colledge S, Connelly J (eds) The origins and spread of domestic plants in Southwest Asia and Europe. Institute of Archaeology, University College London, London, pp 93–109Google Scholar
  153. Martin JH, Leighty CE (1924) Experiments with emmer, spelt, and einkorn. USDA Dept Bul, Washington, DC, p 1197Google Scholar
  154. McFadden ES (1930) A successful transfer of emmer characteristics to vulgare wheat. J Am Soc Agro 22:1020–1034Google Scholar
  155. Mehra KL (2003) The origin, domestication and selection of crops for specific Yemeni environments. In: Al-Hakimi A, Pelat F (eds) Indigenous knowledge and sustainable agriculture in Yemen. Centre Français d’Archéologie et de Sciences Sociales de Sana’a, Les Cahiers du CEFAS, pp 9–14Google Scholar
  156. Mellaart J (1975) The Neolithic of the Near East. Thames and Hudson, LondonGoogle Scholar
  157. Michalikova A (1970) The influence of stigma extracts of individual varieties of wheat on the germination of chlamydospores of Ustilago tritici (Pers.) Jens. Polnohospodarstvo 16:19–23Google Scholar
  158. Miége E (1924) Les formes marocaines de Triticum monococcum L. Bull de la Société des Sciences Naturelles du Maroc 4(7):154–160 (in French)Google Scholar
  159. Miége E (1925) Sur la présence au Maroc de T. dicoccum. Bull de la Société des Sciences Naturelles du Maroc 5(3):98–109 (in French)Google Scholar
  160. Miller NF (1991) The Near East. In: van Zeist W, Wasylikowa K, Behre KE (eds) Progress in Old World Palaeoethnobotany. Balkema, Rotterdam, pp 133–160Google Scholar
  161. Mithal SK, Kopper MN (1990) Evaluation and conservation of wheat genetic resources in India. In: Srivastava JP, Damania AB (eds) Wheat Genetic Resources: Meeting Diverse Needs. Wiley, Chichester, pp 201–209Google Scholar
  162. Mohan BH, Malleshi NG (2006) Characteristics of native and enzymatically hydrolyzed common wheat (Triticum aestivum) and dicoccum wheat (Triticum dicoccum) starches. Eur Food Res Technol 223:355–361Google Scholar
  163. Moore KM, Miller NF, Hiebert FT, Meadow RH (1994) Agriculture and herding in the early oasis settlements of the Oxus civilization. Antiquity 68(259):418–427Google Scholar
  164. Mori N, Ishi T, Ishido T, Hirosawa S, Watatani H, Kawahara T, Nesbitt M, Belay G, Takumi S, Ogihara Y, Nakamura C (2003) Origins of domesticated emmer and common wheat inferred from chloroplast DNA fingerprinting. In: Pogna NE, Romano M, Pogna EA, Galterio G (eds) 10th international wheat genetics symposium, Paestum, Italy. Instituto Sperimentale per la Cerealicoltura, Rome, pp 25–28Google Scholar
  165. Moritz LA (1958) Grain-mills and flour in classical antiquity. Clarendon Press, OxfordGoogle Scholar
  166. Mujeeb-Kazi A, Rosas V, Roldan S (1996) Conservation of the genetic variation of Triticum tauschii (Coss.) Schmalh. (Aegilops squarrosa auct. non L.) in synthetic hexaploid wheats (T. turgidum L. s.lat. x T. tauschii; 2 n = 6x = 42, AABBDD) and its potential utilization for wheat improvement. Genet Resour Crop Evol 43:129–134Google Scholar
  167. Nagarajan S (2004) Opportunities and strategies to make Indian wheat globally competitive. In: Rao VS, Singh G, Misra SC (eds) Wheat for warmer areas. Anamaya Publishers, New Delhi, pp 11–23Google Scholar
  168. Nayeem KA, Sivasamy M (2004) Semi-dwarf Triticum dicoccum developed by nuclear technique. Abstract of papers for the National Symposium on Wheat Improvement for the Tropical Areas. TNAU. Coimbatore and IARI, Regional Station, Wellington, p 8Google Scholar
  169. Nayeem KA, Sivasamy M, Nagarajan S (2006) Induced Pusa dwarfing genes in T. turgidum var. dicoccum and their inheritance. Plant Mutation Reports 1(2):17–20Google Scholar
  170. Nesbitt M (1993) Ancient crop husbandry at Kaman-Kalehöyük: 1991 archaeobotanical report. In: Mikasa T (ed) Essays on Anatolian Archaeology. Bull of the Middle Eastern culture center in Japan 7. Harrassowitz, Wiesbaden, pp 75–97Google Scholar
  171. Nesbitt M (1995) Plants and people in ancient Anatolia. Biblical Archaeol 58(2):68–81Google Scholar
  172. Nesbitt M, Samuel D (1996) From staple crop to extinction? The archaeology and history of the hulled wheat. In: Padulosi S, Hammer K, Heller J (eds) Hulled wheats, promoting the conservation and used of underutilized and neglected crops. IPGRI, Rome, pp 40–99Google Scholar
  173. Nielsen F, Mortensen JV (1998) Ecological cultivation of Emmer and Giant Durum. Gron Viden. Markburg 4:194–196Google Scholar
  174. Ohta S, Furuta Y (1993) A report of the wheat field research in Yugoslavia. Wheat Inf Serv 76:39–42Google Scholar
  175. Oliver RE, Cai X, Friesen TL, Halley S, Stack RW, Xu SS (2008) Evaluation of Fusarium head blight resistance in tetraploid wheat (Triticum turgidum L.). Crop Sci 48:213–222Google Scholar
  176. Olsen CC (1998) Old cereal species, Growing emmer and durum wheat without pesticides. Gron Viden. Markburg 4:196–199Google Scholar
  177. Ortiz-Monasterio JI, Graham RD (2000) Breeding for trace minerals in wheat. Food Nutr Bull 21(4):392–396Google Scholar
  178. Ozkan H, Brandolini A, Schafer-Pregl R, Salamini F (2002) AFLP analysis of a collection of tetraploid wheat indicated the origin of emmer and hard wheat domestication in southeastern Turkey. Mol Biol Evol 19:1797–1801PubMedGoogle Scholar
  179. Ozkan H, Brandolini A, Pozzi C, Effgen S, Wunder J, Salamini F (2005) A reconsideration of the domestication geography of tetraploid wheat. Theor Appl Genet 110:1052–1060PubMedGoogle Scholar
  180. Padulosi S, Hammer K, Heller J (eds) (1996) Hulled wheats, promoting the conservation and used of underutilized and neglected crops. IPGRI, Rome, 262 pGoogle Scholar
  181. Pagnotta MA (2003) Evaluation of genetic diversity present in tetraploid wheat from Mediterranean basin. In: Mare C, Faccioli P, Stanca M (eds) EUCARPIA Cereal Section Meeting, Italy. Marchi SNC Press, Salsomaggiore, pp 39–42Google Scholar
  182. Pagnotta MA, Mondini L, Codianni P, Fares C (2009) Agronomical, quality, and molecular characterization of twenty Italian emmer wheat (Triticum dicoccon) accessions. Genet Res Crop Evol 56:299–310Google Scholar
  183. Pandey HN, Rao MV (1987) Grain improvement in Triticum durum through interspecific hybridization. Indian J Genet Plant Breed 47:133–135Google Scholar
  184. Pantanelli E (1944) Coltivazioni erbacee. Facolta` di Agraria, Bari, p 325 (in Italian)Google Scholar
  185. Patil RB, Yenagi NB, Hanchinal RR (2003) Functional qualities of semolina of different grades and sensory evaluation of traditional products from T. dicoccum, T. durum and T. aestivum wheat varieties. J Food Sci Technol 40(6):571–575Google Scholar
  186. Pavićević LJ (1973) O nekim ranijim proućavanjima i nazivu dvozrnaca. Poljoprivreda i šumarstvo 19(2):15–24 (in Serbian)Google Scholar
  187. Pavićević LJ (1990) Triticum dicoccum Schuebl. (krupnici). Zbornik Matice srpske za prirodne nauke 79:57–92 (in Serbian)Google Scholar
  188. Peña-Chocarro L (1996) In situ conservation of hulled wheats species: the case of Spain. In: Padulosi S, Hammer K, Heller J (eds) Hulled wheats, promoting the conservation and used of underutilized and neglected crops. IPGRI, Rome, pp 129–146Google Scholar
  189. Peña-Chocarro L, Zapata L (1997) El Triticum dicoccum (ezkandia) en Navarra: de la agricultura prehistórica a la extinción de un trigo arcaico. Zainak 14:249–252 (in Spanish)Google Scholar
  190. Perrino P, Hammer K (1982) Triticum monococcum L. and T. dicoccum Schübler (syn. of T. dicoccon Schrank) are still cultivated in Italy. Genetica agraria 36:343–354Google Scholar
  191. Perrino P, Hammer K (1983) Collection of land-races of cultivated plants in South Italy 1982. Kulturpflanze 31:219–226Google Scholar
  192. Perrino P, Laghetti G (1994) Il farro: cenni storici ed aspetti agronomici. In: Perrino P, Semeraro D, Laghetti G (eds) Il farro: un cereale della salute. Proceedings of the Congress, Potenza, Italy 18 June 1994, pp 22–51 (in Italian)Google Scholar
  193. Perrino P, Hammer K, Hanelt P (1981) Report of travels to South Italy 1980 for the collection of indigenous material of cultivated plants. Kulturpflanze 29:433–442Google Scholar
  194. Perrino P, Hammer K, Lehmann Chr O (1982) Collection of land-races of cultivated plants in South Italy 1981. Kulturpflanze 30:181–190Google Scholar
  195. Perrino P, Hammer K, Hanelt P (1984) Collection of land-races of cultivated plants in South Italy 1983. Kulturpflanze 32:207–216Google Scholar
  196. Perrino P, Infantino S, Laghetti G, Volpe N, Di Marzio A (1991) Valutazione e selezione di farro in ambienti marginali dell’Appennino molisano. Informatore Agrario 42:57–62 (in Italian)Google Scholar
  197. Perrino P, Infantino S, Basso P, Di Marzio A, Volpe N, Laghetti G (1993) Valutazione e selezione di farro in ambienti marginali dell’Appennino molisano (II nota). Informatore Agrario 43:41–44 (in Italian)Google Scholar
  198. Perrino P, Laghetti G, D’Antuono LF, Al Ajlouni M, Kanbertay M, Szabo AT, Hammer K (1996) Ecogeographical distribution of hulled wheat species. In: Padulosi S, Hammer K, Heller J (eds) Hulled wheats, promoting the conservation and used of underutilized and neglected crops. IPGRI, Rome, pp 101–119Google Scholar
  199. Pessina A, Rottoli M (1996) New evidencies on the earliest farming cultures in Northern Italy: archaeological and paleobothanical data. Porocilo o raziskovanju paleolitika, neolitika in eneolitika v Sloveniji XXIII, LjubljanaGoogle Scholar
  200. Piergiovanni AR, Laghetti G, Perrino P (1996) Characteristics of meal from hulled wheats (Triticum dicoccum Schrank and T. spelta L.): an evaluation of selected accessions. Cereal Chem 73(6):732–735Google Scholar
  201. Piergiovanni AR, Simeone R, Pasqualone A (2009) Composition of whole and refined meals of Kamut® under southern Italian conditions. Chem Engin Transactions 17:891–896Google Scholar
  202. Porfiri O, Petrini A, Fuselli D, Minoia C, Borghi B, D’Antuono LF, Minelli M, Codoni D, Mazzocchetti A ((1996)) Farro: scelta varietale. Risultati della sperimentazione 1995–1996. L’informatore agrario 36:58–62 (in Italian)Google Scholar
  203. Porfiri O, Papa R, Veronesi F (1998) Il farro nel rilancio delle aree marginali umbro-marchigiane. In: Papa C (ed) Il farro, saperi, usi e conservazione delle varieta` locali. Quaderni del CEDRAV, vol 1, pp 58–67 (in Italian)Google Scholar
  204. Quick JS, Walsh DE, Lebsock KL, Miller JD (1974) Registration of ‘Ward’ durum wheat. Crop Sci 14:607–608Google Scholar
  205. Reddy M, Yenagi NB, Rao M, Srivanasan CN, Hanchinal RR (1998) Grain and gluten quality of some cultivars of wheat species and their suitability for preparation of traditional South India sweet products. J Food Sci Technol 35(5):441–444Google Scholar
  206. Reed GM (1916) The powdery mildews of Avena and Triticum. Research Bull Missouri Agr Exp Stat 23 pGoogle Scholar
  207. Robinson J, Skovmand B (1992) Evaluation of emmer wheat and other Triticeae for resistance to Russian wheat aphid. Gen Res Crop Evol 39:159–163Google Scholar
  208. Rollefson G, Simmons A, Donaldson M, Gillespie W, Kafafi Z, Kohler-Rollefson I, McAdam E, Ralston S, Tubb K (1985) Excavations at the pre-pottery Neolithic B village of Aïn Ghazal (Jordan) 1983. Mitteilungen der Deutschen Orient-Gesellschaft zu Berlin 117:69–116Google Scholar
  209. Rondon MR, Gough FJ, Williams ND (1966) Inheritance of stem rust resistance in Triticum aestivum ssp. vulgare ‘Reliance’ and PI 94701 of Triticum durum. Crop Sci 6:177–179Google Scholar
  210. Sallares R (1991) The ecology of the ancient Greek World. Duckworth, LondonGoogle Scholar
  211. Samuel D (1994) An archaeological study of baking and bread in New Kingdom Egypt. PhD thesis, University of CambridgeGoogle Scholar
  212. Saraswat KS (1984) Discovery of emmer wheat and fenugreek from India. Curr Sci 53(17):925Google Scholar
  213. Saraswat KS, Pokharia AK (2003) Palaeobotanical investigations at early Harappan Kunal. Pragdhara 13:108Google Scholar
  214. Schiemann E (1951) Emmer in Troja. Berichte der Deutschen Botanischen Gesellschaft 64:155–170 (in German)Google Scholar
  215. Schneider M (1994) Verkohlte Pflanzenreste aus einem neolithischen. Brunnen in Schletz, NO. Archäologie Ősterreich 5:18–22Google Scholar
  216. Serjeant RB (1974) The cultivation of cereals in medieval Yemen. In: Proceedings of the seminar for Arabian Studies, LondonGoogle Scholar
  217. Serpen A, Gokmen V, Karagoz A, Koksel H (2008) Phytochemical quantification and total antioxidant capacities of emmer wheat (Triticum dicoccon Schrank) and einkorn (Triticum monococcum L.) wheat landraces. J Agric Food Chem 56:7285–7292PubMedGoogle Scholar
  218. Singh A (2006) Ancient grains, a wheat by any other name. The Canadian organic grower, pp 16–18Google Scholar
  219. Smith GS (1957) Inheritance of stem rust reaction in tetraploid wheat hybrids: I. Allelic genes in Mindum durum x Vernal emmer. Agron J 49:134–137Google Scholar
  220. Spurr MS (1986) Arable cultivation in Roman Italy c200 BC–cAD 100. Journal of Roman Studies. Monographs 3. Society for the Promotion of Roman Studies, LondonGoogle Scholar
  221. Stallknecht GF, Gilbertson KM, Ranney JE (1996) Alternative wheat cereals as food grains: einkorn, emmer, spelt, kamut, and triticale. In: Janick J (ed) Progress in new crops. ASHS Press, Alexandria, pp 156–170Google Scholar
  222. Stehno Z (2007) Emmer wheat Rudico can extend the spectra of cultivated plants. Czech J Genet Plant Breed 43(3):113–115Google Scholar
  223. Strehlow W, Hertzka G, Weuffen W (1994) Aspetti nutrizionali e caratteristiche dietetiche del farro nel trattamento di malattie croniche. In: Perrino P, Semeraro D, Laghetti G (eds) Convegno Il farro un cereale della salute. Potenza, pp 52–66 (In Italian)Google Scholar
  224. Sunderwirth SD, Roelfs AP (1980) Greenhouse characterization of the adult plant resistance of Sr2 to wheat stem rust. Phytopathology 70:634–637Google Scholar
  225. Švek M, Civáň P, Mikulová K, Kuchta T, Siekel P, Hauptvogel P, Masár Š (2005) DNA polymorphism in some samples of European emmer. Czech J Genet Plant Breed 41:203–207Google Scholar
  226. Szabó AT, Hammer K (1996) Notes on the taxonomy of farro: Triticum monococcum, T. dicoccon and T. spelta. In: Padulosi S, Hammer K, Heller J (eds) Hulled wheats, promoting the conservation and used of underutilized and neglected crops. IPGRI, Rome, pp 2–40Google Scholar
  227. Täckholm V (1977) Flora. In: Helck W, Otto E (eds) Lexikon der Ägyptologie. Band II. Erntefest-Hordjedef. Otto Harrassowitz, Wiesbaden, pp 267–275 (in German)Google Scholar
  228. Tallarico R (1990) Il farro: coltura alternativa per il recupero delle aree marginali. L’informatore agrario 12:107–110 (in Italian)Google Scholar
  229. Tandon JP, Hanchinal RR (1992) Nutritious emmer deserves more attention. Indian farming 42:18–19Google Scholar
  230. Teklu Y, Hammer K, Röder MS (2007) Simple sequence repeats marker polymorphism in emmer wheat (Triticum dicoccon Schrank): analysis of genetic diversity and differentiation. Gen Res and Crop Evol 54:543–554Google Scholar
  231. Téllez Molina R, Alonso Peña M (1952) Los trigos de la Ceres Hispánica de Lagasca y Clemente. Instituto Nacional De Investigaciones Agrarias, Madrid (in Spanish)Google Scholar
  232. Tesemma T, Belay G (1991) Aspects of Ethiopian tetraploid wheat with emphasis on durum wheat genetics and breeding research. A historical perspective. In: Tanner DG, Hulluka M (eds) Gebremariam H. Ethiopia, Addis AbabaGoogle Scholar
  233. Tesfaye K (2000) Morphological and biochemical diversity of emmer wheat (Triticum dicoccum) in Ethiopia. MSc Thesis Addis Ababa University, Science Faculty, Department of Biology, Applied Genetics SectionGoogle Scholar
  234. Tomar SMS, Kochumadhavan M, Nambisan PNN (1991) Hybrid weakness in Triticum dicoccum Schübl. Wheat Inf Service 72:9–11Google Scholar
  235. Toubert P (1973) Les structures du Latium médiéval. Le Latium méridional et la Sabine du IXe siècle à la fin du XIIe siècle. Ecole Française de Rome, Rome (in French)Google Scholar
  236. Trethowan RM, Mujeeb-Kazi A (2008) Novel germplasm resources for improving environmental stress tolerances of hexaploid wheat. Crop Sci 48:1255–1265Google Scholar
  237. Tsunewaki K (1960) Monosomic and conventional analysis in common wheat. III. Lethality. Japanese J Genetics 35:71–75Google Scholar
  238. Tsunewaki K (1966) Comparative gene analysis of common wheat and its ancestral species. III. Glume hairiness. Genetics 53:303–311PubMedGoogle Scholar
  239. Tsunewaki K, Kihara H (1961) F1 monosomic analysis of Triticum macha. Wheat Inf Service 12:1–3Google Scholar
  240. Ufer M (1956) Studien an afghanischen Weizen. Z. für Pflanzenzüchtung 36:133–152 (in German)Google Scholar
  241. University College London (2005) Environmental archaeology of Volubilis, MoroccoGoogle Scholar
  242. van Zeist W (1981) Plant remains from Cape Andreas-Kastros (Cyprus). In: Le Brun A (ed) Un site neolithique precéramique en Chypre: cap Andreas-Kastros. Paris, pp 95–99Google Scholar
  243. van Zeist W, Bakker-Heeres JAH (1975) Prehistoric and early historic plant husbandry in the Altinova Plain, southeastern Turkey. In: van Loon MN (ed) Korucutepe 1. North-Holland, Amsterdam, pp 221–257Google Scholar
  244. van Zeist W, Bakker-Heeres JAH (1984) Archaeobotanical studies in the Levant. Late paleolithic Mureybit. Palaeohistoria 26:171–199Google Scholar
  245. van Zeist W, Bottema S (1971) Plant husbandry in early Neolithic Nea Nikomedeia, Greece. Acta Botanica Neerlandica 20(5):524–538Google Scholar
  246. Vatsala CN, Haridas Rao P (1990) Physico-chemical and rheological characteristics of Indian T. dicoccum wheat in comparison with T. aestivum and T. durum wheats. Indian Miller 11(2):3–8Google Scholar
  247. Vavilov NI (1951) The origin, variation, immunity and breeding of cultivated species. Translated from the Russian by Chester KS. Chronica Botanica 13:1–366Google Scholar
  248. Vavilov NI (1964a) Mirovye resursy sortov khlebnykh zlakov, zernovykh bobovykh, l’na i ikh ispolzovanie v selektzii. (World resources of cereals, leguminous seed crops and flax, and their utilization in breeding). Nauka press, Moskow and Leningrad, 122 p (in Russian)Google Scholar
  249. Vavilov NI (1964b) Plant immunity to infectious diseases. In: Izbrannye trudy (Selected Works). Nauka, Moscow and Leningrad, pp 132–300 (in Russian)Google Scholar
  250. Vuorela I, Lempiäinen T (1988) Archaeobotany of the site of the oldest cereal grain find in Finland. Ann Bot Fenn 25:33–45Google Scholar
  251. Wang X, Li W, Zheng Y (2007) Principal component and cluster analysis of agronomic characters in Triticum dicoccum Schrank. J of Sichuan Agric Univ 25(3):239–248Google Scholar
  252. Warburton ML, Crossa J, Franco J, Kazi M, Trethowan R, Rajaram S, Pfeiffer W, Zhang P, Dreisigacker S, van Ginkel M (2006) Bringing wild relatives back into the family: recovering genetic diversity in CIMMYT improved wheat germplasm. Euphytica 149:289–301Google Scholar
  253. Werner H (1895) Die Sorten und der Anbau des Getreides. Verlagsbuchhandlung Paul Parey, SW, pp 445–457Google Scholar
  254. Wetterstrom W (1993) Foraging and farming in Egypt: the transition from hunting and gathering to horticulture in the Nile valley. In: Shaw T, Sinclair P, Andah B, Okpoko A (eds) The archaeology of Africa. Food, metals and towns. Routledge, London, pp 165–226Google Scholar
  255. Willcox G (1991) La culture inventée, la domestication inconsciente: le début de l’agriculture au Proche-Orient. In: Cauvin MC (ed) Rites et rythmes agraires. Travaux de la Maison de l’Orient, Lyon, pp 9–31 (in French)Google Scholar
  256. Willcox G (1998) Archaeobotanical evidence for the beginnings of agriculture in Southeast Asia. In: Damania AB, Valkoun J, Willcox G, Qualset CO (eds) The origins of agriculture and crop domestication. ICARDA, Aleppo, pp 25–38Google Scholar
  257. Williams ND, Gough FJ (1965) Inheritance of stem rust reaction in a Khapli emmer cross. Crop Sci 5:145–147Google Scholar
  258. Willkomm M (1852) Der Ackerbau in Spanien. Agronomische Zeitung 7(2):21–26 (in German)Google Scholar
  259. Wood JRI (1997) A Handbook of Yemen Flora. Royal Botanical Gardens, Kew 434 pGoogle Scholar
  260. Worede M (1997) Ethiopian in situ conservation. In: Maxted N, Ford-Lloyd BV, Hawkes JG (eds) Plant genetic conservation: the in situ approach. Chapman and Hall, London, pp 290–301Google Scholar
  261. Yamaleev AM, Krivchenko VI, Gavrilyuk IP (1975) Differentiation of races of Ustilago tritici by proteins in the spores. Selskokh Biol 10:370–374Google Scholar
  262. Yanchenko VI (1985) A study of interspecific hybrids of Triticum durum Desf. x Triticum dicoccum (Schrank) Schuebl. and ways of using them in durum wheat breeding. Naucho Tek Eyul Sibirskogo Old Vashknil (Scientific-Technical Bull Sibirsk Branch of Vashknil) 45:3–7 (in Russian)Google Scholar
  263. Yenagi NB, Hanchinal RR, Suma C (1999) Nutritional quality of emmer wheat semolina and its use in planning therapeutic diets. Abstracts XXXII Annual Meeting Nutrition Society in India, Avinashilingam University, Coimbatore, p 35Google Scholar
  264. Zaharieva M, Dreisigacker S, Crossa J, Payne T, Misra S, Hanchinal RR, Mujahid MY, Trethowan R (2009) Genetic diversity within Triticum turgidum L. subsp. dicoccon (Schrank) Thell. (cultivated emmer) and its utilization in wheat breeding. Abstracts 6th international triticeae symposium, June 1–5, 2009, Kyoto University Kyoto, JapanGoogle Scholar
  265. Zahran MA, Willis AJ (1992) The vegetation of Egypt. Chapman and Hall, LondonGoogle Scholar
  266. Zhukovsky PM (1951) Türkiye’nin zirai bünyesi (Agricultural structure of Turkey). Türkiye leker Fabrikalari Nesriyati No 20 Kipçak C, Nouruzhan H, Túrkistanlì S translators) (in Turkish)Google Scholar
  267. Zhukovsky PM (1964) Kulturnye rasteniya i ikh sorodichi (Cultivated plants and their relatives). Kolos, Leningrad, 791 p (in Russian)Google Scholar
  268. Zohary D (2004) Unconscious selection and the evolution of domesticated plants. Econ Bot 58(1):5–10Google Scholar
  269. Zohary D, Hopf M (1993) Domestication of plants in the Old World: the origin and spread of cultivated plants in West Africa, Europe, and the Nile Valley, 2nd edn. Clarendon Press, Oxford 278Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Maria Zaharieva
    • 1
  • Negash Geleta Ayana
    • 2
  • Amin Al Hakimi
    • 3
  • Satish C. Misra
    • 4
  • Philippe Monneveux
    • 5
    • 6
  1. 1.CIMMYT Global Wheat ProgramMexico, DFMexico
  2. 2.Institute of Agronomy and Plant BreedingBOKU-University of Natural Resources and Applied Life SciencesWien, ViennaAustria
  3. 3.Faculty of AgricultureSana’a University and Yemeni Association for Sustainable Agriculture DevelopmentSana’aYemen
  4. 4.Genetics DepartmentAgharkar Research InstitutePuneIndia
  5. 5.SupAgro MontpellierMontpellier CedexFrance
  6. 6.Lima 12Peru

Personalised recommendations