Genetic Resources and Crop Evolution

, Volume 57, Issue 7, pp 1065–1077

Velvet bentgrass (Agrostis canina L.) is the likely ancestral diploid maternal parent of allotetraploid creeping bentgrass (Agrostis stolonifera L.)

  • David Rotter
  • Karen V. Ambrose
  • Faith C. Belanger
Research Article


Understanding genetic relationships among the three most important Agrostis species will be important in breeding and genomic studies aimed at cultivar improvement. Creeping, colonial, and velvet bentgrasses (Agrostis stolonifera L., A. capillaris L., and A. canina L., respectively) are commercially important turfgrass species often used on golf courses. Velvet bentgrass is a diploid and creeping and colonial bentgrasses are both allotetraploids. A model for the genomic relationships among these species was previously developed from cytological evidence. The genome designations were A1A1 for velvet bentgrass, A1A1A2A2 for colonial bentgrass, and A2A2A3A3 for creeping bentgrass. Here we used phylogenetic analysis based on DNA sequences of nuclear ITS and protein coding genes and the plastid trnK intron and matK gene to reexamine these relationships. In contrast to the previous model, the DNA sequence analysis suggested that velvet bentgrass was closely related to creeping bentgrass and it is likely the maternal parent of creeping bentgrass. Phylogenetic analysis of some conserved nuclear genes revealed a close relationship of the velvet bentgrass sequences with the A2 subgenome sequences of creeping bentgrass. We therefore propose that velvet bentgrass be designated as having the A2 genome, rather than the A1 genome as in the previous model.


Agrostis Bentgrass Phylogeny Polyploidy 


  1. Alvarez I, Wendel JF (2003) Ribosomal ITS sequences and plant phylogenetic inference. Mol Phylogenet Evol 29:417–434CrossRefPubMedGoogle Scholar
  2. Baldwin BG, Sanderson MJ, Porter JM, Wojciechowski MF, Campbell CS, Donoghue MJ (1995) The ITS region of nuclear ribosomal DNA: a valuable source of evidence on angiosperm phylogeny. Ann Mo Bot Gard 82:247–277CrossRefGoogle Scholar
  3. Banks PA, Branham B, Harrison K, Whitson T, Heap I (2004) Determination of the potential impact from the release of glyphosate- and glufosinate-resistant Agrostis stolonifera L. in various crop and non-crop ecosystems. Special publication of the Weed Science Society of America for USDA and APHIS.
  4. Belanger FC, Plumley K, Day PR, Meyer WA (2003) Interspecific hybridization as a potential method for improvement of Agrostis species. Crop Sci 43:2172–2176CrossRefGoogle Scholar
  5. Belanger FC, Bonos S, Meyer WA (2004) Dollar spot resistant hybrids between creeping bentgrass and colonial bentgrass. Crop Sci 44:581–586Google Scholar
  6. Bonos SA, Plumley KA, Meyer WA (2002) Ploidy determination in Agrostis using flow cytometry and morphological traits. Crop Sci 42:192–196CrossRefPubMedGoogle Scholar
  7. Bortiri E, Coleman-Derr D, Lazo GR, Anderson OD, Gu YQG (2008) The complete chloroplast genome sequence of Brachypodium distachyon: sequence comparison and phylogenetic analysis of eight grass plastomes. BMC Res Notes 1:61CrossRefPubMedGoogle Scholar
  8. Bouchenak-Khelladi Y, Salamin N, Savolainen V, Forest F, van der Bank M, Chase MW, Hodkinson TR (2008) Large multi-gene phylogenetic trees of the grasses (Poaceae): progress towards complete tribal and generic level sampling. Mol Phylogenet Evol 47:488–505CrossRefPubMedGoogle Scholar
  9. Brede AD, Sellmann MJ (2003) Three minor Agrostis species: redtop, highland bentgrass, and Idaho bentgrass. In: Casler MD, Duncan RR (eds) Turfgrass biology, genetics, and breeding. Wiley, Hoboken, pp 207–223Google Scholar
  10. Brilman LA (2003) Velvet bentgrass (Agrostis canina L.). In: Casler MD, Duncan RR (eds) Turfgrass biology, genetics, and breeding. Wiley, Hoboken, pp 201–205Google Scholar
  11. Catalan P, Kellogg EA, Olmstead RG (1997) Phylogeny of Poaceae subfamily Pooideae based on chloroplast ndhF gene sequences. Mol Phylogenet Evol 8:150–166CrossRefPubMedGoogle Scholar
  12. Chakraborty N, Bae J, Warnke S, Chang T, Jung G (2005) Linkage map construction in allotetraploid creeping bentgrass (Agrostis stolonifera L.). Theor Appl Genet 111:795–803CrossRefPubMedGoogle Scholar
  13. Cronn RC, Small RL, Haselkorn T, Wendel JF (2002) Rapid diversification of the cotton genus (Gossypium: Malvaceae) revealed by analysis of sixteen nuclear and chloroplast genes. Am J Bot 89:707–725CrossRefGoogle Scholar
  14. Doring E, Schneider J, Hilu KW, Roser M (2007) Phylogenetic relationships in the Aveneae/Poeae complex (Pooideae, Poaceae). Kew Bull 62:407–424Google Scholar
  15. Fortune PM, Pourtau N, Viron N, Ainouche ML (2008) Molecular phylogeny and reticulate origins of the polyploid Bromus species from section Genea (Poaceae). Am J Bot 95:454–464CrossRefGoogle Scholar
  16. Fulton TM, Van der Hoeven R, Eannetta NT, Tanksley SD (2002) Identification, analysis, and utilization of conserved ortholog set markers for comparative genomics in higher plants. Plant Cell 14:1457–1467CrossRefPubMedGoogle Scholar
  17. Gaut BS, Tredway LP, Kubik C, Gaut RL, Meyer W (2000) Phylogenetic relationships and genetic diversity among members of the Festuca-Lolium complex (Poaceae) based on ITS sequence data. Plant Syst Evol 224:33–53CrossRefGoogle Scholar
  18. Heiser CB Jr, Whitaker TW (1948) Chromosome number, polyploidy, and growth habit in California weeds. Am J Bot 35:179–186CrossRefPubMedGoogle Scholar
  19. Hilu KW, Borsch T, Muller K, Soltis DE, Soltis PS, Savolainen V, Chase MW, Powell MP, Alice LA, Evans R, Sauquet H, Neinhuis C, Slotta TAB, Rohwer JG, Campbell CS, Chatrou LW (2003) Angiosperm phylogeny based on matK sequence information. Am J Bot 90:1758–1776CrossRefGoogle Scholar
  20. Hsiao C, Chatterton NJ, Asay KH, Jensen KB (1995) Molecular phylogeny of the Pooideae (Poaceae) based on nuclear rDNA (ITS) sequences. Theor Appl Genet 90:389–398CrossRefGoogle Scholar
  21. Jones K (1956a) Species differentiation in Agrostis I. Cytological relationships in Agrostis canina L. J Genet 54:370–376CrossRefGoogle Scholar
  22. Jones K (1956b) Species differentiation in Agrostis. Part II. The significance of chromosome pairing in the tetraploid hybrids of Agrostis canina subsp. montana Hartmn., A. tenuis Sibth. and A. stolonifera L. J Genet 54:377–393CrossRefGoogle Scholar
  23. Jones K (1956c) Species differentiation in Agrostis. III. Agrostis gigantea Roth and its hybrids with A. tenuis Sibth. and A. stolonifera L. J Genet 54:394–399CrossRefGoogle Scholar
  24. Klimyuk VI, Carroll BJ, Thomas CM, Jones JDG (1993) Alkali treatment for rapid preparation of plant material for reliable PCR analysis. Plant J 3:493–494CrossRefPubMedGoogle Scholar
  25. Kovarik A, Matyasek R, Lim KY, Skalicka K, Koukalova B, Knap S, Chase M, Leitch AR (2004) Concerted evolution of 18-5.8-26S rDNA repeats in Nicotiana allotetraploids. Biol J Linn Soc 82:615–625CrossRefGoogle Scholar
  26. MacBryde B (2005) White paper: perspective on creeping bentgrass, Agrostis stolonifera L. U.S. Dept. of Agriculture, Animal, and Plant Health Inspection Service, Biotechnology Regulatory Services, Riverdale, MD.
  27. Murray BG, DeLange PJ, Ferguson AR (2005) Nuclear DNA variation, chromosome numbers and polyploidy in the endemic and indigenous grass flora of New Zealand. Ann Bot 96:1293–1305CrossRefPubMedGoogle Scholar
  28. Quintanar A, Castroviejo S, Catalan P (2007) Phylogeny of the tribe Aveneae (Pooideae, Poaceae) inferred from plastid trnT-F and nuclear ITS sequences. Am J Bot 94:1554–1569CrossRefGoogle Scholar
  29. Reeder JR (1977) Chromosome numbers in western grasses. Am J Bot 64:102–110CrossRefGoogle Scholar
  30. Reichman JR, Watrud LS, Lee EH, Burdick CA, Bollman MA, Storm MJ, King GA, Mallory-Smith C (2006) Establishment of transgenic herbicide-resistant creeping bentgrass (Agrostis stolonifera L.) in nonagronomic habitats. Mol Ecol 15:4243–4255CrossRefPubMedGoogle Scholar
  31. Ridgway KP, Duck JM, Young JPW (2003) Identification of roots from grass swards using PCR-RFLP and FFLP of the plastid trnL (UAA) intron. BMC Ecol 3:8CrossRefPubMedGoogle Scholar
  32. Rotter D, Bharti AK, Li HM, Luo C, Bonos SA, Bughrara S, Jung G, Messing J, Meyer WA, Rudd S, Warnke SE, Belanger FC (2007) Analysis of EST sequences suggests recent origin of allotetraploid colonial and creeping bentgrasses. Mol Genet Genomics 278:197–209CrossRefPubMedGoogle Scholar
  33. Rotter D, Amundsen K, Bonos SA, Meyer WA, Warnke SE, Belanger FC (2009) Molecular genetic linkage map for allotetraploid colonial bentgrass. Crop Sci 49:1609–1619CrossRefGoogle Scholar
  34. Ruemmele BA (2003) Agrostis capillaris (Agrostis tenuis Sibth.) colonial bentgrass. In: Casler MD, Duncan RR (eds) Turfgrass biology, genetics, and breeding. Wiley, Hoboken, pp 187–200Google Scholar
  35. Sang T, Crawford DJ, Stuessy TF (1995) Documentation of reticulate evolution in peonies (Paeonia) using internal transcribed spacer sequences of nuclear ribosomal DNA: implications for biogeography and concerted evolution. Proc Natl Acad Sci USA 92:6813–6817CrossRefPubMedGoogle Scholar
  36. Saski C, Lee S-B, Fjellheim S, Guda C, Jansen RK, Luo H, Tomkins J, Rognli OA, Daniell H, Clarke JL (2007) Complete chloroplast genome sequences of Hordeum vulgare, Sorghum bicolor and Agrostis stolonifera, and comparative analyses with other grass genomes. Theor Appl Genet 115:571–590CrossRefPubMedGoogle Scholar
  37. Senchina DA, Alvarez I, Cronn RC, Liu B, Rong J, Noyes RD, Paterson AH, Wing RA, Wilkins TA, Wendel JF (2003) Rate variation among nuclear genes and the age of polyploidy in Gossypium. Mol Biol Evol 20:633–643CrossRefPubMedGoogle Scholar
  38. Simmons MP, Ochoterena H (2000) Gaps as characters in sequence-based phylogenetic analyses. Syst Biol 49:369–381CrossRefPubMedGoogle Scholar
  39. Small RL, Cronn RC, Wendel JF (2004) Use of nuclear genes for phylogeny reconstruction in plants. Aust Syst Bot 17:145–170CrossRefGoogle Scholar
  40. Subbotin SA, Krall EL, Riley IT, Chizhov VN, Staelens A, DeLoose M, Moens M (2004) Evolution of the gall-forming plant parasitic nematodes (Tylenchida: Anguinidae) and their relationships with hosts as inferred from internal transcribed spacer sequences of nuclear ribosomal DNA. Mol Phylogenet Evol 30:226–235CrossRefPubMedGoogle Scholar
  41. Swofford L (2002) PAUP*: phylogenetic analysis using parsimony (*and other methods), Version 4. Sinauer Associates, SunderlandGoogle Scholar
  42. Tang J, Xia H, Cao M, Zhang X, Zeng W, Hu S, Tong W, Wang J, Wang J, Yu J, Yang H, Zhu L (2004) A comparison of rice chloroplast genomes. Plant Physiol 135:412–420CrossRefPubMedGoogle Scholar
  43. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The CLUSTAL-X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882CrossRefPubMedGoogle Scholar
  44. Torrecilla P, Catalan P (2002) Phylogeny of broad-leaved and fine-leaved Festuca lineages (Poaceae) based on nuclear ITS sequences. Syst Bot 27:241–251Google Scholar
  45. Vogel JP, Gu YQ, Twigg P, Lazo GR, Laudencia-Chingcuanco D, Hayden DM, Donze TJ, Vivian LA, Stamova B, Coleman-Derr D (2006) EST sequencing and phylogenetic analysis of the model grass Brachypodium distachyon. Theor Appl Genet 113:186–195CrossRefPubMedGoogle Scholar
  46. Wang J-B, Wang C, Shi S-H, Zhong Y (2000) Evolution of parental ITS regions of nuclear rDNA in allopolyploid Aegilops (Poaceae) species. Hereditas 133:1–7CrossRefPubMedGoogle Scholar
  47. Warnke SE (2003) Creeping bentgrass (Agrostis stolonifera L.). In: Casler MD, Duncan RR (eds) Turfgrass biology, genetics, and breeding. Wiley, Hoboken, pp 175–185Google Scholar
  48. Warnke SE, Douches DS, Branham BE (1998) Isozyme analysis supports allotetraploid inheritance in tetraploid creeping bentgrass (Agrostis palustris Huds.). Crop Sci 38:801–805CrossRefGoogle Scholar
  49. Wendel JF, Schnabel A, Seelanan T (1995) Bidirectional interlocus concerted evolution following allopolyploid speciation in cotton (Gossypium). Proc Natl Acad Sci USA 92:280–284CrossRefPubMedGoogle Scholar
  50. Wipff JK, Fricker C (2001) Gene flow from transgenic creeping bentgrass (Agrostis stolonifera L.) in the Willamette Valley, Oregon. Int Turf Soc Res J 9:224–242Google Scholar
  51. Wolfson R, Higgins KG, Sears BB (1991) Evidence for replication slippage in the evolution of Oenothera chloroplast DNA. Mol Biol Evol 8:709–720PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • David Rotter
    • 1
  • Karen V. Ambrose
    • 1
  • Faith C. Belanger
    • 1
  1. 1.Department of Plant Biology and Pathology and The Biotechnology Center for Agriculture & The EnvironmentRutgers, The State University of New JerseyNew BrunswickUSA

Personalised recommendations