Advertisement

Genetic Resources and Crop Evolution

, Volume 57, Issue 4, pp 501–514 | Cite as

Are Lotus creticus and Lotus cytisoides (Leguminosae) closely related species? Evidence from nuclear ribosomal ITS sequence data

  • Graeme Sandral
  • Galina V. Degtjareva
  • Tatiana E. Kramina
  • Dmitry D. Sokoloff
  • Tahir H. Samigullin
  • Steve Hughes
  • Carmen M. Valiejo-Roman
Research Article

Abstract

Lotus creticus is a potentially important perennial legume for soil management in the Mediterranean climate. This plant is in focus of experimental research in different countries. The so-called Lotus creticus group is taxonomically problematic. Although some authors consider all members of the group as a single variable species, others segregate several species distinct from L. creticus, especially L. cytisoides. Recent morphological studies suggested that L. creticus and L. cytisoides are taxonomically distinct at specific level and not even closely related to each other. Two molecular phylogenetic studies published so far and based on one accession of L. creticus each gave conflicting results on relationships of this species. In this paper, sequences of nuclear ribosomal ITS (nrITS) are produced from multiple accessions of both L. creticus and L. cytisoides. Taxonomic identity of each accession has been tested using morphology. The new nrITS sequences are inserted in a data matrix containing a representative set of Lotus species covering all the geographical range and all major taxonomic groups of Lotus. Phylogenetic analysis of nrITS sequence data showed that L. creticus is related to L. assakensis and other species of the section Pedrosia while L. cytisoides is related to L. longisiliquosus and other species of the section Lotea. These results are important for establishing future germplasm collection, breeding and selection programs of perennial Lotus species.

Keywords

Loteae Lotus creticus Lotus cytisoides Mediterranean Molecular phylogeny nrITS Perennial legumes Taxonomy 

Notes

Acknowledgements

We are grateful to all seed donators for providing seed material of L. creticus and L. cytisoides and to Maxim Nuraliev for providing herbarium specimens of L. pseudocreticus and L. assakensis.

References

  1. Allan GJ, Porter JM (2000) Tribal delimitation and phylogenetic relationships of Loteae and Coronilleae (Faboideae: Fabaceae) with special reference to Lotus: evidence from nuclear ribosomal ITS sequences. Am J Bot 87:1871–1881CrossRefPubMedGoogle Scholar
  2. Allan GJ, Zimmer EA, Wagner WL, Sokoloff DD (2003) Molecular phylogenetic analyses of tribe Loteae (Leguminosae): implications for classification and biogeography. In: Klitgaard BB, Bruneau A (eds) Advances in legume systematics. Pt. 10, Higher Level Systematics. Royal Botanic Gardens, Kew, pp 371–393Google Scholar
  3. Allan GJ, Francisco-Ortega J, Santos-Guerra A, Boerner E, Zimmer EA (2004) Molecular phylogenetic evidence for the geographic origin and classification of Canary Island Lotus (Fabaceae: Loteae). Mol Phylogenet Evol 32:123–138CrossRefPubMedGoogle Scholar
  4. Alverson WS, Whitelock BA, Nyffeler R, Bayer C, Baum DA (1999) Phylogeny of the core Malvales: evidence from ndhF sequence data. Am J Bot 86:1474–1486CrossRefPubMedGoogle Scholar
  5. Ball PW, Chrtková-Žertová A (1968) Lotus L. In: Tutin TG, Heywood VH, Burges NA, Moore DM, Valentine SM, Webb DA (eds) Flora Europaea, vol 2. Cambridge University Press, Cambridge, pp 173–176Google Scholar
  6. Bañon S, Fernandez JA, Franco JA, Torrecillas A, Alarcón JJ, Sánchez-Blanco MJ (2004) Effects of water stress and night temperature preconditioning on water relations and morphological and anatomical changes of Lotus creticus plants. Sci Hortic 101:333–342CrossRefGoogle Scholar
  7. Degtjareva GV (2007) Analysis of congruence between molecular and morphological data in phylogeny reconstruction, exemplified by families Leguminosae and Umbelliferae. PhD Thesis, Moscow State University, MoscowGoogle Scholar
  8. Degtjareva GV, Kramina TE, Sokoloff DD, Samigullin TH, Valiejo-Roman CM, Antonov AS (2006) Phylogeny of the genus Lotus (Leguminosae, Loteae): evidence from nrITS sequences and morphology. Can J Bot 84:813–830CrossRefGoogle Scholar
  9. Degtjareva GV, Kramina TE, Sokoloff DD, Samigullin TH, Sandral G, Valiejo-Roman CM (2008) New data on nrITS phylogeny of Lotus (Leguminosae, Loteae). Wulfenia 15:35–49Google Scholar
  10. Edgar RC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32:1792–1797CrossRefPubMedGoogle Scholar
  11. Felsenstein J (1985) Confidence limits on phylogenetics: an approach using the bootstrap. Evolution 39:783–791CrossRefGoogle Scholar
  12. Franco JA, Cros V, Bañón S, González A, Abrisqueta JM (2002) Effects of nursery irrigation on postplanting root dynamics of Lotus creticus in semiarid field conditions. HortScience 37:525–528Google Scholar
  13. Greuter W, Burdet HM, Long G (1989) Med-checklist, vol 4. Genève, BerlinGoogle Scholar
  14. Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucl Acids Symp Ser 41:95–98Google Scholar
  15. Heyn CC, Herrnstadt I (1968) The Lotus creticus group. Kew Bull 21:229–309Google Scholar
  16. Kramina TE (2006) A contribution to the taxonomic revision of the Lotus angustissimus-complex (Leguminosae, Loteae). Wulfenia 13:57–92Google Scholar
  17. Kramina TE, Sokoloff DD (1999) Taxonomic bearing of stylodium tooth in the genus Lotus (Papilionaceae) with special reference to Lotus creticus L. Feddes Repert 110:527–533Google Scholar
  18. Le Houerou HN (1979) Resources and potential of the native flora for fodder and sown pasture production in the arid and semi-arid zones of North Africa. In: Goodin JR, Northington DK (eds) Arid land plant resources. Texas Tech University, Lubbock, pp 384–401Google Scholar
  19. Mader U, Podlech D (1989) Revision der marokkanischen Arten von Lotus L. subgen. Pedrosia (R. Lowe) Brand (Leguminosae). Mitt Bot Staatssamml München 28:513–567Google Scholar
  20. Mönch C (1910) Über Griffel und Narbe einiger Papilionaceae. Beih Bot Centralbl 27:83–126Google Scholar
  21. Monod T (1980) Contribution à l`étude des Lotus (Papilionaceae) ouest-sahariens et macaronésiens. Adansonia 19:367–402Google Scholar
  22. Morales MA, Alarcón JJ, Torrecillas A, Sánchez-Blanco MJ (2000) Growth and water relations of Lotus creticus creticus plants as affected by salinity. Biol Plant 43:413–417CrossRefGoogle Scholar
  23. Posada D, Crandall KA (1998) Modeltest: testing the model of DNA substitution. Bioinformatics 14:817–818CrossRefPubMedGoogle Scholar
  24. Quezel P, Santa S (1962) Nouvelle Flore de l’Algérie et des régions désertiques méridionales. T. 1. Centre National de la Recherche Scientifique, ParisGoogle Scholar
  25. Rejili M, Vadel AM, Guetet A, Neffatti M (2007) Effect of NaCl on the growth and the ionic balance K+/Na+ of two populations of Lotus creticus (L.) (Papilionaceae). South Afr J Bot 73:623–631CrossRefGoogle Scholar
  26. Ronquist F, Huelsenbeck JP (2003) MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19:1572–1574CrossRefPubMedGoogle Scholar
  27. Sanchez-Blanco MJ, Morales MA, Torrecillas A, Alarcon JJ (1998) Diurnal and seasonal osmotic potential changes in Lotus creticus creticus plants grown under saline stress. Plant Sci 136:1–10CrossRefGoogle Scholar
  28. Sandral G, Remizowa MV, Sokoloff DD (2006) A taxonomic survey of Lotus section Pedrosia (Leguminosae, Loteae). Wulfenia 13:97–192Google Scholar
  29. Savé R, Biel C, de Herralde F (2000) Leaf pubescence, water relations and chlorophyll fluorescence in two subspecies of Lotus creticus L. Biol Plant 43:239–244CrossRefGoogle Scholar
  30. Swofford DL (2000) PAUP*. Phylogenetic analysis using parsimony (*and other methods). Version 4. Sinauer Associates, Sunderland, MAGoogle Scholar
  31. Tsuriell DE (1974) Sand Dune stabilization in Israel. Int J Biometeorol 18:89–93CrossRefGoogle Scholar
  32. Valdés B (2000) Lotus L., Tetragonolobus Scop. In: Flora Iberica, vol 7 (2). Real Jardín Botaníco, Madrid, pp 776–812; 823–829Google Scholar
  33. Valiejo-Roman CM, Terentieva EI, Samigullin TH, Pimenov MG (2002) Relationships among genera in Saniculoideae and selected Apioideae (Umbelliferae) inferred from nrITS sequences. Taxon 51:91–103CrossRefGoogle Scholar
  34. Vignolio OR, Biel C, de Herralde F, Araújo-Alves JPL, Savé R (2002) Growth of Lotus creticus creticus and Cynodon dactylon under two levels of irrigation. Aust J Agric Res 53:1375–1381CrossRefGoogle Scholar
  35. Vignolio OR, Biel C, de Herralde F, Araujo-Alves JPL, Savé R (2005) Use of water-stress tolerant Lotus creticus and Cynodon dactylon in soil revegetation on different slopes in a Mediterranean climate. Ann Bot Fenn 42:195–205Google Scholar
  36. Zakhia F, Jeder H, Domergue O, Willems A, Cleyet-Marel J-C, Gillis M, Dreyfus B, de Lajudie P (2004) Characterisation of wild legume nodulating bacteria (LNB) in the infra-arid zone of Tunisia. Syst Appl Microbiol 27:380–395CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Graeme Sandral
    • 1
    • 2
  • Galina V. Degtjareva
    • 3
  • Tatiana E. Kramina
    • 4
  • Dmitry D. Sokoloff
    • 4
  • Tahir H. Samigullin
    • 5
  • Steve Hughes
    • 6
  • Carmen M. Valiejo-Roman
    • 5
  1. 1.NSW Department of Primary IndustriesWagga Wagga Agricultural Research InstituteWagga WaggaAustralia
  2. 2.Faculty of Natural and Agricultural ScienceUniversity of Western AustraliaCrawleyAustralia
  3. 3.Botanical Garden of Moscow University, Biological FacultyMoscow State UniversityMoscowRussia
  4. 4.Department of Higher Plants, Biological FacultyMoscow State UniversityMoscowRussia
  5. 5.Department of Evolutionary Biochemistry, A.N. Belozersky Institute of Physicochemical BiologyMoscow State UniversityMoscowRussia
  6. 6.South Australian Research and Development InstituteAdelaideAustralia

Personalised recommendations