Genetic Resources and Crop Evolution

, Volume 57, Issue 2, pp 243–253

Ecogeographical distribution of wild, weedy and cultivated Sorghum bicolor (L.) Moench in Kenya: implications for conservation and crop-to-wild gene flow

  • Evans Mutegi
  • Fabrice Sagnard
  • Moses Muraya
  • Ben Kanyenji
  • Bernard Rono
  • Caroline Mwongera
  • Charles Marangu
  • Joseph Kamau
  • Heiko Parzies
  • Santie de Villiers
  • Kassa Semagn
  • Pierre Sibiry Traoré
  • Maryke Labuschagne
Research Article

Abstract

The potential gene flow between a crop and its wild relatives is largely determined by the overlaps in their ecological and geographical distributions. Ecogeographical databases are therefore indispensable tools for the sustainable management of genetic resources. In order to expand our knowledge of Sorghum bicolor distribution in Kenya, we conducted in situ collections of wild, weedy and cultivated sorghum. Qualitative and quantitative morphological traits were measured for each sampled wild sorghum plant. Farmers’ knowledge relating to the management of sorghum varieties and autecology of wild sorghum was also obtained. Cluster analysis supports the existence of several wild sorghum morphotypes that might correspond to at least three of the five ecotypes recognized in Africa. Intermediate forms between wild and cultivated sorghum belonging to the S. bicolor ssp. drummondii are frequently found in predominantly sorghum growing areas. Crop-wild gene flow in sorghum is likely to occur in many agroecosystems of Kenya.

Keywords

Agroecosystems Environmental risk assessment Genetic resources Germplasm conservation GIS Introgression Morphological diversity Sorghum bicolor 

References

  1. Aldrich PR, Doebley J (1992) Restriction fragment variation in the nuclear and chloroplast genomes of cultivated and wild (Sorghum bicolor). Theor Appl Genet 85:293–302Google Scholar
  2. Armstrong TT, Fitzjohn RG, Newstrom LE, Wilton AD, Lee WG (2005) Transgene escape: what potential for crop-wild? Mol Ecol 14:2111–2132CrossRefPubMedGoogle Scholar
  3. Arriola PE, Ellstrand NC (1997) Fitness of interspecific hybrids in the genus sorghum: persistence of crop genes in wild populations. Ecol Appl 7:512–518CrossRefGoogle Scholar
  4. Ayoo LMK (2008) Genetic transformation of Kenyan sorghum (Sorghum bicolor (L.) Moench) with anti-fungal genes and response to Collectotrichum sublineolum infection. PhD Dissertation, University of Hamburg, GermanyGoogle Scholar
  5. Casas AM, Kononowicz AK, Haan TG, Zhang LY, Tomes DT, Bressan RA, Hasegawa PM (1997) Transgenic sorghum plants obtained after microprojectile bombardment of immature inflorescences. In Vitro Cell Dev Biol—Plant 33:92–100CrossRefGoogle Scholar
  6. Chessel D, Dufour AB, Thioulouse J (2004) The ade4 package-I- one-table methods. R News 4:5–10Google Scholar
  7. Clayton WD, Renvoize SA (1982) Poaceae. Flora of tropical East Africa, part 3. A.A. Balkema, RotterdamGoogle Scholar
  8. Conner AJ, Glare TR, Nap JP (2003) The release of genetically modified crops into the environment. Part II—overview of ecological risk assessment. Plant J 33:19–46CrossRefPubMedGoogle Scholar
  9. Cook SM, Khan ZR, Pickett JA (2007) The use of push-pull strategies in integrated pest management. Annu Rev Entomol 52:375–400CrossRefPubMedGoogle Scholar
  10. De Wet JMJ (1978) Systematics and evolution of sorghum sect sorghum (Gramineae). Am J Bot 65:477–484CrossRefGoogle Scholar
  11. De Wet JMJ, Harlan JR, Price EG (1970) Origin of variability in the spontanea complex of Sorghum bicolor. Am J Bot 57:704–707CrossRefGoogle Scholar
  12. Doggett H (1988) Sorghum. Wiley, New YorkGoogle Scholar
  13. Doggett H, Majisu BN (1968) Disruptive selection in crop development. Heredity 23:1–26CrossRefGoogle Scholar
  14. Ellstrand NC (2003) Dangerous liaisons—when cultivated plants mate with their wild relatives. Johns Hopkins University Press, BaltimoreGoogle Scholar
  15. Ellstrand NC, Prentice HC, Hancock JF (1999) Gene flow and introgression form domesticated plants into their wild relatives. Annu Rev Ecol Syst 30:539–563CrossRefGoogle Scholar
  16. Environmental Systems Research Institute (1999) Arcview GIS 3.2. Environmental Systems Research Institute, Inc, USAGoogle Scholar
  17. Gao Z, Xie X, Ling Y, Muthukrishnan S, Liang GH (2005) Agrobacterium tumefaciens-mediated sorghum transformation using a mannose selection system. Plant Biotechnol J 3:591–599CrossRefPubMedGoogle Scholar
  18. Girijashankar V, Sharma HC, Sharma KK, Swathisree V, Prasad LS, Bhat BV, Royer M, Secundo BS, Narasu ML, Altosaar I, Seetharama N (2005) Development of transgenic sorghum for insect resistance against the spotted stem borer (Chilo partellus). Plant Cell Report 24:513–522CrossRefGoogle Scholar
  19. Gurney AL, Press MC, Scholes JD (2002) Can wild relatives of sorghum provide new sources of resistance or tolerance against striga species? Weed Res 42:317–324CrossRefGoogle Scholar
  20. Harlan JR, de Wet JMJ (1971) Toward a rational classification of cultivated plants. Taxon 20:509–517CrossRefGoogle Scholar
  21. Harlan JR, de Wet JMJ (1972) A simplified classification of cultivated sorghum. Crop Sci 12:172–176Google Scholar
  22. Heywood V, Casas A, Ford-Lloyd B, Kell S, Maxted N (2007) Conservation and sustainable use of crop wild relatives. Agric Ecosyst Environ 121:245–255CrossRefGoogle Scholar
  23. Howe A, Shirley S, Dweikat I, Fromm M, Clemente T (2006) Rapid and reproducible Agrobacterium-mediated transformation of sorghum. Plant Cell Rep 25:751–758CrossRefGoogle Scholar
  24. Kamala V, Singh SD, Bramel PJ, Manohar RD (2002) Sources of resistance to downy mildew in wild and weedy sorghum. Crop Sci 42:357–1360CrossRefGoogle Scholar
  25. Mantel N (1967) The detection of disease clustering and a generalized regression approach. Cancer Res 27:209–220PubMedGoogle Scholar
  26. Maxted N, Guarino L (1997) Ecogeographic surveys. In: Maxted N, Ford-Lloyd BV, Hawkes JG (eds) Plant genetic conservation: the in situ approach. Chapman & Hall, LondonGoogle Scholar
  27. Morgan WTW (1974) Sorghum gardens in south Turkana: cultivation among a nomadic pastoral people. Geogr J 140:80–93CrossRefGoogle Scholar
  28. Morrell PL, Williams-Coplin TD, Lattu AL, Bowers JE, Chandler JM, Patterson AH (2005) Crop-to-weed introgression has impacted allelic composition of Johnsongrass populations with and without recent exposure to cultivated sorghum. Mol Ecol 14:2143–2154CrossRefPubMedGoogle Scholar
  29. Randall RP (2002) A global compendium of weeds. R.G. and F.J. Richardson Publishers, MerredithGoogle Scholar
  30. Rao Kameswara N, Reddy LJ, Bramel PJ (2003) Potential of wild species for genetic enhancement of some semi-arid food crops. Genet Resour Crop Evol 50:707–721CrossRefGoogle Scholar
  31. Sharma HC, Franzmann BA (2001) Host-plant preference and oviposition response of the sorghum midge, towards wild relatives of sorghum. J Appl Entomol 125:109–114CrossRefGoogle Scholar
  32. Snowden JD (1936) The cultivated races of Sorghum. Adlard and Son, LondonGoogle Scholar
  33. Snowden JD (1955) The wild fodder Sorghum of the section Eusorghum. J Linn Lond 55:191–260Google Scholar
  34. R Development Core Team (2005) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0, URL http://www.R-project.org
  35. Tesso T, Kapran I, Grenier C, Snow A, Sweeney P, Pedersen J, Marx D, Bothma G, Ejeta G (2008) The potential for crop-to-wild gene flow in sorghum in Ethiopia and Niger: A geographic survey. Crop Sci 48:1425–1431CrossRefGoogle Scholar
  36. Ward J (1963) Hierarchical grouping to optimize an objective function. J Am Stat Assoc 58:236–244CrossRefGoogle Scholar
  37. Zhao Z-Y (2008) The Africa biofortified sorghum project—applying biotechnology to develop nutritionally improved sorghum for Africa. In: Xu Z, Li J, Xue J, Yang W (eds) Biotechnology and sustainable agriculture 2006 and beyond. Proceedings of the 11th IAPTC&B Congress, Aug 31–18, 2006 Beijing, China. Springer, Netherlands. pp 273–277Google Scholar
  38. Zhao Z-Y, Cai T, Tagliani L, Wang N, Pang H, Rudert M, Schroeder S, Hondred D, Pierce D (2000) Agrobacterium-mediated sorghum transformation. Plant Mol Biol 44:789–798CrossRefPubMedGoogle Scholar
  39. Zhu H, Muthukrishnan S, Krishnaveni S, Wilde G, Jeoung J, Liang G (1998) Biolistic transformation of sorghum using a rice chitinase gene. J Genet Breed 52:243–252Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Evans Mutegi
    • 1
    • 2
  • Fabrice Sagnard
    • 1
    • 3
  • Moses Muraya
    • 5
  • Ben Kanyenji
    • 6
  • Bernard Rono
    • 6
  • Caroline Mwongera
    • 1
  • Charles Marangu
    • 6
  • Joseph Kamau
    • 2
  • Heiko Parzies
    • 5
  • Santie de Villiers
    • 1
  • Kassa Semagn
    • 1
    • 4
  • Pierre Sibiry Traoré
    • 7
  • Maryke Labuschagne
    • 8
  1. 1.International Crops Research Institute for the Semi-Arid Tropics (ICRISAT-Nairobi)NairobiKenya
  2. 2.Kenya Agricultural Research Institute (KARI) National GenebankNairobiKenya
  3. 3.CIRAD, UMR Développement et Amélioration des PlantesNairobiKenya
  4. 4.CIMMYTNairobiKenya
  5. 5.Seed Science and Population Genetics, Institute of Plant BreedingUniversity of HohenheimStuttgartGermany
  6. 6.KARI-EmbuEmbuKenya
  7. 7.ICRISAT-MaliBamakoMali
  8. 8.University of the Free StateBloemfonteinRepublic of South Africa

Personalised recommendations