Genetic Resources and Crop Evolution

, Volume 56, Issue 7, pp 991–1000 | Cite as

Collection and characterization of yellow endosperm sorghums from West Africa for biofortification

  • M. G. Salas Fernandez
  • I. Kapran
  • S. Souley
  • M. Abdou
  • I. H. Maiga
  • C. B. Acharya
  • M. T. Hamblin
  • S. KresovichEmail author
Research Article


Sorghum is a good candidate crop for breeding to increase provitamin A, i.e., biofortification. Yellow endosperm sorghums contain carotenoids, including precursors of vitamin A, and sorghum is a major staple crop in areas of Asia and Africa where vitamin A deficiency is prevalent. Our objective was to collect and characterize yellow endosperm sorghums as a potential new source of genetic diversity to increase provitamin A content. A set of 164 landraces were collected from southern Niger and northern Nigeria. The most important use of these cultivars was as food. The endosperm exhibited a significant variation in yellow intensity. Lutein, zeaxanthin and β-carotene were the most abundant carotenoids in the ten landraces with the most intense yellow color. Cluster analysis, principal coordinate analysis and population differentiation test revealed that this set of 164 landraces represent a new genetic pool that might increase the genetic diversity of yellow endosperm sorghums in applied breeding programs.


Carotenoids Genetic diversity Provitamin A Sorghum bicolor 



High performance liquid chromatography


Polymorphic information content


Quantitative trait loci


Simple sequence repeat



We thank Ross Welch, Ying Hu, Laurence Heller and Li Li for assistance with carotenoid analysis and quantification.

Supplementary material

10722_2009_9417_MOESM1_ESM.xls (24 kb)
(XLS 23 kb)
10722_2009_9417_MOESM2_ESM.xls (22 kb)
(XLS 21 kb)


  1. Blessin CW, vanEtten CH, Wiebe R (1958) Carotenoid content of the grain from yellow endosperm-type sorghums. Cereal Chem 35:359–365Google Scholar
  2. Botstein D, White RL, Skolnick M, Davis RW (1980) Construction of a genetic linkage map in man using restriction fragment length polymorphisms. Am J Hum Genet 32:314–331PubMedGoogle Scholar
  3. Casa AM, Pressoir G, Brown PJ, Mitchell SE, Rooney WL, Tuinstra MR, Franks CD, Kresovich S (2008) Community resources and strategies for association mapping in sorghum. Crop Sci 48:30–40. doi: 10.2135/cropsci2007.02.0080 CrossRefGoogle Scholar
  4. Deu M, Sagnard F, Chantereau J, Calatayud C, Herault D, Mariac C, Pham J-L, Vigouroux Y, Kapran I, Traore PS, Mamadou A, Gerard B, Ndjeunga J, Bezançon G (2008) Niger-wide assessment of in situ sorghum genetic diversity with microsatellite markers. Theor Appl Genet 116:903–913. doi: 10.1007/s00122-008-0721-7 CrossRefPubMedGoogle Scholar
  5. Doyle JJ, Doyle JL (1987) A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochemistry Bull 19:11–15Google Scholar
  6. Excoffier L, Laval G, Schneider S (2005) Arlequin ver. 3.0: an integrated software package for population genetics data analysis. Evol Bioinform Online 1:47–50PubMedGoogle Scholar
  7. FAO (1995) Sorghum and millets in human nutrition. Food and nutrition series v. 27. Chapter 2 and 5. Food and agriculture organization of the United Nations, RomeGoogle Scholar
  8. Food and Agriculture Organization of the United Nations (2003) FAOSTAT database.
  9. Gower JC (1966) Some distance properties of latent root and vector methods used in multivariate analysis. Biometrika 53:325–338Google Scholar
  10. Harjes CE, Rocheford TR, Bai L, Brutnell TP, Bermudez Kandianis C, Sowinski SG, Stapleton AE, Vallabhaneni R, Williams M, Wurtzel ET, Yan J, Buckler ES (2008) Natural genetic variation in lycopene epsilon cyclase tapped for maize biofortification. Science 319:330–333. doi: 10.1126/science.1150255 CrossRefPubMedGoogle Scholar
  11. Kean EG, Ejeta G, Hamaker BR, Ferruzzi MG (2007) Characterization of carotenoid pigments in mature and developing kernels of selected yellow-endosperm sorghum varieties. J Agric Food Chem 55:2619–2626. doi: 10.1021/jf062939v CrossRefPubMedGoogle Scholar
  12. Kurilich AC, Juvik JA (1999) Simultaneous quantification of carotenoids and tocopherols in corn kernel extracts by HPLC. J Liq Chrom Rel Technol 22:2925–2934. doi: 10.1081/JLC-100102068 CrossRefGoogle Scholar
  13. Liu K, Muse SV (2005) PowerMarker: integrated analysis environment for genetic marker data. Bioinformatics 21:2128–2129. doi: 10.1093/bioinformatics/bti282 CrossRefPubMedGoogle Scholar
  14. Mantel N (1967) The detection of disease clustering and a generalized regression approach. Cancer Res 27:209–220PubMedGoogle Scholar
  15. Michalakis Y, Excoffier L (1996) A generic estimation of population subdivision using distances between alleles with special reference for microsatellite loci. Genetics 142:1061–1064PubMedGoogle Scholar
  16. Moros EE, Darnoko D, Cheryan M, Perkins EG, Jerrell J (2002) Analysis of xanthophylls in corn by HPLC. J Agric Food Chem 50:5787–5790. doi: 10.1021/jf020109l CrossRefPubMedGoogle Scholar
  17. Nei M (1972) Genetic distance between populations. Am Nat 106:283–292. doi: 10.1086/282771 CrossRefGoogle Scholar
  18. Nestel P, Bouis HE, Meenakshi JV, Pfeiffer W (2006) Biofortification of staple food crops. J Nutr 136:1064–1067PubMedGoogle Scholar
  19. Reddy BVS, Ramesh S, Longvah T (2005) Prospects of breeding for micronutrients and β-Carotene-dense sorghums. SAT ejournal 1 (1). Accessed 15 Jan 2009
  20. Saitou N, Nei M (1987) The neighbor-joining method—a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425PubMedGoogle Scholar
  21. Salas Fernandez MG (2008) Genetic and phenotypic characterization of carotenoid content in sorghum grain. PhD dissertation, Cornell University, IthacaGoogle Scholar
  22. Salas Fernandez MG, Hamblin M, Li L, Rooney WL, Tuinstra MR, Kresovich S (2008) Quantitative trait loci analysis of endosperm color and carotenoid content in sorghum grain. Crop Sci 48:1732–1743. doi: 10.2135/cropsci2007.12.0684 CrossRefGoogle Scholar
  23. SCN (2004) Fifth report on the world nutrition situation. Nutrition for improved development outcomes. UN Standing committee on nutrition, GenevaGoogle Scholar
  24. Smouse PE, Long JC, Sokal RR (1986) Multiple regression and correlation extensions of the mantel test of matrix correspondence. Syst Zool 35:627–632. doi: 10.2307/2413122 CrossRefGoogle Scholar
  25. Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596–1599. doi: 10.1093/molbev/msm092 CrossRefPubMedGoogle Scholar
  26. Weir BS (1996) Genetic data analysis II. Sinauer Associates, Inc., Sunderland, pp 150–156Google Scholar
  27. West KP Jr (2002) Extent of vitamin A deficiency among preschool children and women of reproductive age. J Nutr 132:2857–2866Google Scholar
  28. Worzella WW, Khalidy R, Badawi Y, Daghir S (1965) Inheritance of beta-carotene in grain sorghum hybrids. Crop Sci 5:591–592CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • M. G. Salas Fernandez
    • 1
    • 5
  • I. Kapran
    • 2
  • S. Souley
    • 2
  • M. Abdou
    • 2
  • I. H. Maiga
    • 2
  • C. B. Acharya
    • 1
  • M. T. Hamblin
    • 3
  • S. Kresovich
    • 4
    Email author
  1. 1.Department of Plant Breeding and Genetics, Institute for Genomic DiversityCornell UniversityIthacaUSA
  2. 2.Institut National de la Recherche Agronomique du Niger (INRAN)NiameyNiger
  3. 3.Institute for Genomic DiversityCornell UniversityIthacaUSA
  4. 4.Institute for Genomic DiversityCornell UniversityIthacaUSA
  5. 5.Agronomy DepartmentIowa State UniversityAmesUSA

Personalised recommendations