Genetic Resources and Crop Evolution

, Volume 56, Issue 6, pp 843–850

A novel genome of C and the first autotetraploid species in the Setaria genus identified by genomic in situ hybridization

  • Yongqiang Wang
  • Hui Zhi
  • Wei Li
  • Haiquan Li
  • Yongfang Wang
  • Zhanjing Huang
  • Xianmin Diao
Research Article

Abstract

Genomic in situ hybridization (GISH) was used to investigate the genomic relationships among some newly collected species of genus Setaria. Previous work identified that S. viridis and S. adhaerens carry genomes A and B, respectively. GISH patterns obtained in this report clearly distinguished the genome of S. grisebachii from the known genomes A and B, and indicated its new genomic constitution which we suggest to name genome C of the Setaria genus. The two sets of chromosomes of tetraploid S. queenslandica hybridized well with the A genome of S. viridis indicating its autotetraploid nature. This is the first autotetraploid identified in the Setaria genus, which should be classified into the primary A genome gene pool rather than the tertiary gene pool as previously classified. GISH patterns did not distinguish the genome of S. leucopila from the A genome of S. viridis and S. italica, suggesting its close relation with foxtail millet. Strong hybridization signals were observed when S. adhaerens genomic DNA was used as probe to hybridize the chromosomes of diploid S. verticillata, inferring its B genome nature. Combined with morphological observation and previous work, we deduce that diploid S. verticillata and S. adhaerens are probably taxonomically the same species with different names.

Keywords

Genome analysis Genomic in situ hybridization Setaria 

References

  1. Ahanchede A, Poirier-Hamon S, Darmency H (2004) Why no tetraploid cultivar of foxtail millet? Genet Resour Crop Evol 51:227–230. doi:10.1023/B:GRES.0000024020.91764.8d CrossRefGoogle Scholar
  2. Anamthawat-Jónsson K, Schwarzacher T, Leith AR, Bennett MD, Heslop-Harrison JS (1990) Discrimination between closely related Triticeae species using genomic DNA as a probe. Theor Appl Genet 79:721–728. doi:10.1007/BF00224236 CrossRefGoogle Scholar
  3. Auguier P (1979) Dumortier’s concepts in the genus Setaria Beauv. (Poaceae) (J). Bulletindu Jardin Botanique Natl Belgidue 49:427–433. doi:10.2307/3668095 CrossRefGoogle Scholar
  4. Avdulov NP (1931) Karyo-systematische Untersuchungen der Familie Gramineen. Bull Appl Bot Suppl 43. LeningradGoogle Scholar
  5. Benabdelmouna A, Shi Y, Abirached-Darmency M, Darmency H (2001) Genomic in situ hybridization (GISH) discriminates between the A and the B genomes in diploid and tetraploid Setaria species. Genome 44:685–690. doi:10.1139/gen-44-4-685 PubMedCrossRefGoogle Scholar
  6. Bennett ST, Kenton AY, Bennett MD (1992) Genomic in situ hybridization reveals the allopolyploid nature of Milium montianum (Gramineae). Chromosoma 101:420–424. doi:10.1007/BF00582836 CrossRefGoogle Scholar
  7. Bisht MS, Mukai Y (2001) Genomic in situ hybridization identifies genome donor of finger millet (Eleusine coracana). Theor Appl Genet 102:825–832. doi:10.1007/s001220000497 CrossRefGoogle Scholar
  8. Brown WV (1948) A cytological study in the Gramineae. Am J Bot 35:382–385. doi:10.2307/2437938 CrossRefGoogle Scholar
  9. Chen Q, Conner RL, Laroche A, Thomas JB (1998) Genome analysis of Thinopyrum intermedium and Thinopyrum ponticum using genomic in situ hybridization. Genome 41:580–586. doi:10.1139/gen-41-4-580 PubMedCrossRefGoogle Scholar
  10. Darmency H, Pernes J (1987) An inheritance study of domestication in foxtail millet using an interspecific cross. Plant Breed 99:30–33. doi:10.1111/j.1439-0523.1987.tb01146.x CrossRefGoogle Scholar
  11. Dekker J (2003) The foxtail (Setaria) species-group. Weed Sci 51:641–656. doi:10.1614/P2002-IR CrossRefGoogle Scholar
  12. Gupta PK, Singh RV (1977) Variations in chromosomes and flavonoids in Setaria Beauv. Nucleus 20:167–171Google Scholar
  13. Harlan JR, de Wet JMJ (1971) Towards a rational taxonomy of cultivated plants. Taxon 20:509–517. doi:10.2307/1218252 CrossRefGoogle Scholar
  14. Hasterok R, Maluszynska J (2005) FISH and GISH analysis of Brassica genomes. Acta Biol Crac Ser Bot 47:185–192Google Scholar
  15. Hubbard FT (1915) A taxonomic study of Setaria and its immediate allies. Am J Bot 2:169–198. doi:10.2307/2435051 CrossRefGoogle Scholar
  16. Jusuf M, Pernès J (1985) Genetic variability of foxtail millet (Setaria italica P. Beauv.). Electrophoretic study of five isoenzyme systems. Theor Appl Genet 71:385–391. doi:10.1007/BF00251177 CrossRefGoogle Scholar
  17. Khosla PK, Sharma ML (1973) Cytological observations on some species of Setaria. Nucleus 26:38–41Google Scholar
  18. Li HW, Li CH, Pao WK (1945) Cytological genetical studies of the interspecific cross of cultivated foxtail millet, Setaria italica (L.) Beauv., and S. viridis L. J Am Soc Agron 37:32–54Google Scholar
  19. Li Y, Jia JJ, Wang Y, Wu S (1998) Intraspecific and interspecific variation in Setaria revealed by RAPD analysis. Genet Resour Crop Evol 45:279–285. doi:10.1023/A:1008600123509 CrossRefGoogle Scholar
  20. Li CB, Zhang DM, Ge S, Lu BR, Hong DY (2001) Identification of genome constitution of Oryza malampuzhaensis, O.minuta, and O. punctata by multicolor genomic in situ hybridization. Theor Appl Genet 103:204–211. doi:10.1007/s001220100563 CrossRefGoogle Scholar
  21. Mukai Y, Nakahara Y, Yamamoto M (1993) Simultaneous discrimination of the three genomes in hexaploid wheat by multicolor fluorescence in situ hybridization using total genomic and highly repeated DNA probes. Genome 36:489–495. doi:10.1139/g93-067 PubMedCrossRefGoogle Scholar
  22. Panaud O (2006) In: Kole C (ed) Foxtail millet, genome mapping and molecular breeding in plants, volume 1 cereals and millets. Springer-Verlag, BerlinGoogle Scholar
  23. Rominger JM (ed) (1962) Taxonomy of Setaria (Gramineae) in North America. Illinois Biological MonographsGoogle Scholar
  24. Schwarzacher T, Leitch AR, Bennett MD, Heslop-Harrison JS (1989) In situ localization of parental genomes in a wide hybrid. Ann Bot (Lond) 64:315–324Google Scholar
  25. Wang ZM, Devos KM, Liu CJ, Wang RQ, Gale MD (1998) Construction of RFLP-based maps of foxtail millet, Setaria italica (L.) P. Beauv. Theor Appl Genet 96:31–36. doi:10.1007/s001220050705 CrossRefGoogle Scholar
  26. Wang YQ, Zhi H, Li W, Li HQ, Wang YF, Diao XM (2007) Chromosome number identification of some wild Setaria species. J Plant Genet Resour 8:159–164Google Scholar
  27. Wanous M (1990) Origin, taxonomy and ploidy of the millets and minor cereals. Plant Var Seeds 3:99–112Google Scholar
  28. Wu QM, Bai JL (2000) Cytogenetic and isoenzymic studies on foxtail millet and S. verticillata (2x) and S. verticiformis (4x). Acta Bot Boreal-Occident Sinica 20:954–959Google Scholar
  29. Zangré R, Nguyen-Van E, Rherissi B, Till-Bottraud I (1992) Organisation du pool génique de Setaria italica (L.) P. Beauv. et exploitation des ressources génétiques d’espèces spontanées. In: Complexes d’espèces, flux de gènes et ressources génétiques des plantes. Lavoisier édition. BRG, Paris, pp 87–97Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Yongqiang Wang
    • 1
    • 2
  • Hui Zhi
    • 1
    • 3
  • Wei Li
    • 1
  • Haiquan Li
    • 1
  • Yongfang Wang
    • 1
  • Zhanjing Huang
    • 2
  • Xianmin Diao
    • 1
    • 2
    • 3
  1. 1.National Millet Improvement Center of China, Institute of Millet CropsHebei Academy of Agricultural and Forestry SciencesShijiazhuangPeople’s Republic of China
  2. 2.College of Life SciencesHebei Normal UniversityShijiazhuangPeople’s Republic of China
  3. 3.Institute of Crop SciencesChinese Academy of Agricultural SciencesBeijingPeople’s Republic of China

Personalised recommendations