Genetic Resources and Crop Evolution

, Volume 56, Issue 5, pp 663–678 | Cite as

Classification and phylogenetic relationships in Solanum section Lycopersicon based on AFLP and two nuclear gene sequences

Research Article

Abstract

The classification and phylogeny of the species belonging to Solanum section Lycopersicon is a complex issue that has not yet reached a widely accepted consensus. These species diverged recently, are still closely related and, in some cases, are still even capable of interspecific hybridization, thereby blurring the difference between intra- and interspecific variation. To help resolve these issues, in the present study, several accessions covering the natural range for each species were used. In addition, to avoid biases due to the molecular method employed, both AFLP markers and two nuclear-gene sequences, CT179 and CT66, were used to characterize the plant materials. The data obtained suggest a classification similar to those previously proposed by other authors, although with some significant changes. Twelve species were recognized as distinct based on this dataset. According to the data presented, the recently proposed species, S. corneliomulleri, is indistinguishable from S. peruvianum s.str. In addition, both the sequence and the AFLP trees suggest that S. arcanum could represent a complex of populations composed of two cryptic species. With regard to phylogenetic relationships among these species, some clear groups were found: the Lycopersicon group formed by S. pimpinellifolium, S. lycopersicum, S. cheesmaniae and S. galapagense; the Arcanum group constituted by S. chmielewskii, S. neorickii, S. arcanum and S. huaylasense; and the Eriopersicon group made up of S. peruvianum and S. chilense. Solanum pennellii and S. habrochaites are not included in any group, but are the closest to the S. lycopersicoides outgroup.

Keywords

Classification Lycopersicon Phylogeny Solanum Taxonomy 

References

  1. Alvarez AE, Van De Wiel CCM, Smulders MJM, Vosman B (2001) Use of microsatellites to evaluate genetic diversity and species relationships in the genus Lycopersicon. Theor Appl Genet 103:1283–1292. doi:10.1007/s001220100662 CrossRefGoogle Scholar
  2. Arunyawat U (2007) Population structure and speciation history of two closely related wild tomato species. Ph.D. dissertation, Ludwig-Maximilians-Universität München, GermanyGoogle Scholar
  3. Benham J, Jeung JU, Jasieniuk M, Kanazin V, Blake T (1999) Genographer: a graphical tool for automated fluorescent AFLP and microsatellite analysis. Department of Plant Science, Montana State University, BozemanGoogle Scholar
  4. Blanca JM, Prohens J, Anderson GJ, Zuriaga E, Cañizares J, Nuez F (2007) AFLP and DNA sequence variation in an Andean domesticate, pepino (Solanum muricatum, Solanaceae): implications for evolution and domestication. Am J Bot 94:1219–1229. doi:10.3732/ajb.94.7.1219 CrossRefGoogle Scholar
  5. Bohs L (2007) Phylogeny of the cyphomandra clade of the genus Solanum (Solanaceae) based on ITS sequence data. Taxon 56:1012–1026Google Scholar
  6. Bohs L, Olmstead RG (1997) Phylogenetic relationships in Solanum (Solanaceae) based on ndhF sequences. Syst Bot 22:5–17. doi:10.2307/2419674 CrossRefGoogle Scholar
  7. Bonfield J (2004) Staden package, version 1.4. Available at http://staden.sourceforge.net. Accessed 28 July 2008
  8. Child A (1990) A synopsis of Solanum subgenus Potatoe (G. Don) (D’Arcy) (Tuberarium (Dun.) Bitter (s.l.)). Feddes Repert 101:209–235Google Scholar
  9. Clark AG (1990) Inference of haplotypes from PCR-amplified samples of diploid populations. Mol Biol Evol 7:111–122PubMedGoogle Scholar
  10. Darwin SC, Knapp S, Peralta IE (2003) Taxonomy of tomatoes in the Galapagos Islands: native and introduced species of Solanum section Lycopersicon (Solanaceae). Syst Biodivers 1:29–53. doi:10.1017/S1477200003001026 CrossRefGoogle Scholar
  11. Esquinas-Alcazar J, Nuez F (2001) Situación taxonómica, domesticación y difusión del tomate. In: Nuez F (ed) El cultivo del tomate. Mundi-Prensa, Madrid, pp 13–42Google Scholar
  12. Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41:95–98Google Scholar
  13. Hodkinson TR, Renvoize SA, Chonghaile GN, Stapleton CMA, Chase MW (2000) A comparison of ITS nuclear rDNA sequence data and AFLP markers for phylogenetic studies in Phyllostachys (Bambusoideae, Poaceae). J Plant Res 113:259–269. doi:10.1007/PL00013936 CrossRefGoogle Scholar
  14. Knapp SL, Bohs MN, Spooner DM (2004) Solanaceae: a model for linking genomics and biodiversity. Comp Funct Genomics 5:285–291. doi:10.1002/cfg.393 PubMedCrossRefGoogle Scholar
  15. Kosakovsky Pond SL, Frost SDW, Muse SV (2005) HyPhy: hypothesis testing using phylogenies. Bioinformatics 21:676–679. doi:10.1093/bioinformatics/bti079 CrossRefGoogle Scholar
  16. Luckwill LC (1943) The genus Lycopersicon: an historical, biological, and taxonomical survey of the wild and cultivated tomatoes. PhD dissertation, Aberdeen University Studies 120:1–44Google Scholar
  17. Marshall JA, Knapp S, Davey MR, Power JB, Cocking EC, Bennett MD, Cox AV (2001) Molecular systematics of Solanum section Lycopersicum (Lycopersicon) using the nuclear ITS rDNA region. Theor Appl Genet 103:1216–1222. doi:10.1007/s001220100671 CrossRefGoogle Scholar
  18. McClean PE, Hanson MR (1986) Mitochondrial DNA sequence divergence among Lycopersicon and related Solanum species. Genetics 112:649–667PubMedGoogle Scholar
  19. Miller JC, Tanksley SD (1990) RFLP analysis of phylogenetic relationships and genetic variation in the genus Lycopersicon. Theor Appl Genet 80:437–448Google Scholar
  20. Miller P (1754) The gardeners dictionary abridged, 4th edn. John and James Rivington, LondonGoogle Scholar
  21. Müller CH (1940) The taxonomy and distribution of the genus Lycopersicon. Natl Hortic Mag 19:157–160Google Scholar
  22. Nesbitt TC, Tanksley SD (2002) Comparative sequencing in the genus Lycopersicon: implications for the evolution of fruit size in the domestication of cultivated tomatoes. Genetics 162:365–379PubMedGoogle Scholar
  23. Nuez F, Prohens J, Blanca JM (2004) Relationships, origin, and diversity of Galápagos tomatoes: implications for the conservation of natural populations. Am J Bot 91:86–99. doi:10.3732/ajb.91.1.86 CrossRefGoogle Scholar
  24. Nuez F, Díez MJ, Valcárcel JV, Cebolla-Cornejo J, Pérez A, Soler S, Roselló S, Adalid A, Galiana L, Sifres A, Picó B, Blanca JM, Frutos R (2008) Genetic resources of Lycopersicon at the Institute for the Conservation and Improvement of the Agrodiversity. Acta Hortic 789:293–297Google Scholar
  25. Olmstead RG, Palmer JD (1997) Implications for phylogeny, classification, and biogeography of Solanum from cpDNA restriction site variation. Syst Bot 22:19–29. doi:10.2307/2419675 CrossRefGoogle Scholar
  26. Palmer JD, Zamir D (1982) Chloroplast DNA evolution and phylogenetic relationships in Lycopersicon. Proc Natl Acad Sci USA 79:5006–5010. doi:10.1073/pnas.79.16.5006 PubMedCrossRefGoogle Scholar
  27. Peralta IE, Spooner DM (2001) Granule-bound starch synthase (GBSSI) gene phylogeny of wild tomatoes (Solanum L. section Lycopersicon [Mill.] Wettst. subsection Lycopersicon). Am J Bot 88:1888–1902. doi:10.2307/3558365
  28. Peralta IE, Spooner DM (2005) Morphological characterization and relationships of wild tomatoes (Solanum L. section Lycopersicon). In: Keating RC, Hollowell VC, Croat TB (eds) A festschrift for William G. D’Arcy: the legacy of a taxonomist. Monogr Syst Bot Mo Bot Gard 104:227–257Google Scholar
  29. Peralta IE, Knapp S, Spooner DM (2005) New species of wild tomatoes (Solanum section Lycopersicon: Solanaceae) from northern Peru. Syst Bot 30(2):424–434. doi:10.1600/0363644054223657 CrossRefGoogle Scholar
  30. Peralta IE, Spooner DM, Knapp S (2008) Taxonomy of wild tomatoes and their relatives (Solanum sect. Lycopersicoides, sect. Juglandifolia, sect. Lycopersicon; Solanaceae). Syst Bot Monogr :84Google Scholar
  31. Posada D, Crandall KA (1998) Modeltest: testing the model of DNA substitution. Bioinformatics 14:817–818. doi:10.1093/bioinformatics/14.9.817 PubMedCrossRefGoogle Scholar
  32. R Development Core Team (2007) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0, URL http://www.R-project.org. Accessed 28 July 2008
  33. Rick CM (1963) Barriers to interbreeding in Lycopersicon peruvianum. Evolution Int J Org Evolution 17:216–232. doi:10.2307/2406467 Google Scholar
  34. Rick CM (1971) Lycopersicon. In: Wiggins IL, Porter DM (eds) Flora of the Galapagos Islands. Stanford University Press, Stanford, pp 468–471Google Scholar
  35. Rick CM (1979) Biosystematic studies in Lycopersicon and closely related species of Solanum. In: Hawkes JG, Lester RN, Skelding AD (eds) The biology and taxonomy of the Solanaceae. Academic Press, New York, pp 667–678Google Scholar
  36. Rick CM (1986) Reproductive isolation in the Lycopersicon peruvianum complex. In: D’Arcy WG (ed) Solanaceae: biology and systematics. Columbia University Press, New York, pp 477–495Google Scholar
  37. Rick CM, Lamm R (1955) Biosystematic studies on the status of Lycopersicon chilense. Am J Bot 42:663–675. doi:10.2307/2485327 CrossRefGoogle Scholar
  38. Rick CM, Kesicki E, Fobes JF, Holle M (1976) Genetic and biosystematic studies on two new sibling species of Lycopersicon from interandean Peru. Theor Appl Genet 47:55–68. doi:10.1007/BF00281917 CrossRefGoogle Scholar
  39. Rick CM, Fobes JF, Tanksley SD (1979) Evolution of mating systems in Lycopersicon hirsutum as deduced from genetic variation in electrophoretic and morphological characters. Plant Syst Evol 132:279–298. doi:10.1007/BF00982390 CrossRefGoogle Scholar
  40. Ronquist F, Huelsenbeck JP (2003) MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19:1572–1574. doi:10.1093/bioinformatics/btg180 PubMedCrossRefGoogle Scholar
  41. Roselius K, Stephan W, Städler T (2005) The relationship of nucleotide polymorphism, recombination rate and selection in wild tomato species. Genetics 171:753–763. doi:10.1534/genetics.105.043877 PubMedCrossRefGoogle Scholar
  42. Rozas J, Sanchez-Del Barrio JC, Messeguer X, Rozas R (2003) DnaSP, DNA polymorphism analyses by the coalescent and other methods. Bioinformatics 19:2496–2497. doi:10.1093/bioinformatics/btg359 PubMedCrossRefGoogle Scholar
  43. Sifres A, Picó B, Blanca J, De Frutos R, Nuez F (2007) Genetic structure of Lycopersicon pimpinellifolium (Solanaceae) populations collected after the ENSO event 1997–1998. Genet Resour Crop Evol 54:359–377. doi:10.1007/s10722-005-5725-4 CrossRefGoogle Scholar
  44. Spooner DM, Anderson GJ, Jansen RK (1993) Chloroplast DNA evidence for the interrelationships of tomatoes, potatoes, and pepinos (Solanaceae). Am J Bot 80:676–688. doi:10.2307/2445438 CrossRefGoogle Scholar
  45. Spooner DM, Peralta IE, Knapp S (2005) Comparison of AFLPs with other markers for phylogenetic inference in wild tomatoes. Taxon 54:43–61. Solanum L. section Lycopersicon (Mill.) Wettst.Google Scholar
  46. Städler T, Roselius K, Stephan W (2005) Genealogical footprints of speciation processes in wild tomatoes: demography and evidence for historical gene flow. Evolution Int J Org Evolution 59:1265–1270Google Scholar
  47. Städler T, Arunyawat U, Stephan W (2008) Population genetics of speciation in two closely related wild tomatoes (Solanum section Lycopersicon). Genetics 178:339–350. doi:10.1534/genetics.107.081810 PubMedCrossRefGoogle Scholar
  48. Taylor IB (1986) Biosystematics of the tomato. In: Atherton JG, Rudich J (eds) The tomato crop: a scientific basis for improvement. Chapman and Hall, London, pp 1–34Google Scholar
  49. Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680. doi:10.1093/nar/22.22.4673 PubMedCrossRefGoogle Scholar
  50. van Ee BW, Jelinski N, Berry PE, Hipp AL (2006) Phylogeny and biogeography of Croton alabamensis (Euphorbiaceae), a rare shrub from Texas and Alabama, using DNA sequence and AFLP data. Mol Ecol 15:2735–2751PubMedCrossRefGoogle Scholar
  51. Warnock SJ (1991) Natural habitats of Lycopersicon species. HortScience 26:466–471Google Scholar
  52. Xu F, Sun M (2001) Comparative analysis of phylogenetic relationships of grain amaranths and their wild relatives (Amaranthus; Amaranthaceae) using internal transcribed spacer, amplified fragment length polymorphism, and double-primer fluorescent intersimple sequence repeat markers. Mol Phylogenet Evol 21:372–387. doi:10.1006/mpev.2001.1016 PubMedCrossRefGoogle Scholar
  53. Zuriaga E, Blanca JM, Cordero L, Sifres A, Blas-Cerdán WG, Morales R, Nuez F (2008) Genetic and bioclimatic variation in Solanum pimpinellifolium. Genet Resour Crop Evol . doi:10.1007/s10722-008-9340-z Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  1. 1.Instituto de Conservación y Mejora de la Agrodiversidad Valenciana (COMAV)Universidad Politécnica de ValenciaValenciaSpain

Personalised recommendations