Genetic Resources and Crop Evolution

, Volume 56, Issue 4, pp 455–464 | Cite as

Genetic diversity and differentiation in Chinese sour cherry Prunus pseudocerasus Lindl., and its implications for conservation

  • Miao-Miao Li
  • Yu-Liang Cai
  • Zeng-Qiang Qian
  • Gui-Fang Zhao
Research Article

Abstract

In this study, the genetic diversity and differentiation of 10 natural Prunus pseudocerasus Lindl. populations were investigated using inter-simple sequence repeat (ISSR) markers. Totally, 18 selected primers generated 150 loci, with an average of 8.33 bands per primer. The results showed that the percentage of polymorphic bands (PPB) was pretty low at the population level (PPB = 1.13–32%), but relatively high at the species level (PPB = 84%). Besides, a high level of genetic differentiation among populations was detected based on the gene differentiation coefficient (GST = 0.7118) and the hierarchical analysis of molecular variance (AMOVA) (ΦST = 64.53%, P < 0.001), in line with the low inter-population gene flow (Nm = 0.2025). Moreover, Mantel test revealed a significant correlation between genetic and geographic distances among the populations (r = 0.5272, P < 0.005). The high level of intraspecific genetic diversity was probably related with its life history traits, while its small population size and the resultant high levels of genetic drift and inbreeding might explain the low genetic diversity within populations. The relatively high inter-population genetic differentiation was largely attributed to its small population size, habitat fragmentation, the mode of pollen and seed dispersal, and geographic isolation. Based on the present study, conservation strategies were proposed to preserve this valuable natural germplasm resource.

Keywords

Cherry Genetic differentiation Genetic diversity Inter-simple sequence repeats (ISSRs) Prunus pseudocerasus Lindl. 

References

  1. Atkinson CJ, Taylor JM (1996) Effects of elevated CO2 on stem growth, vessel area and hydraulic conductivity of oak and cherry seedlings. New Phytol 133:617–626. doi:10.1111/j.1469-8137.1996.tb01930.x CrossRefGoogle Scholar
  2. Bouzat J, Johnson J, Toepfer J, Simpson S, Esker T, Westemeier R (2008) Beyond the beneficial effects of translocations as an effective tool for the genetic restoration of isolated populations. Conserv Genet. doi:10.1007/s10592-10008-19547-10598
  3. Buza L, Young A, Thrall P (2000) Genetic erosion, inbreeding and reduced fitness in fragmented populations of the endangered tetraploid pea Swainsona recta. Biol Conserv 93:177–186. doi:10.1016/S0006-3207(99)00150-0 CrossRefGoogle Scholar
  4. Cai Y-L (2006) Genetic analysis of the wild cherry germplasm and identification of cultivated cherry varieties using DNA fingerprints. In: College of Life Sciences. Northwest University, Xi’an (Shaanxi, China), p 100Google Scholar
  5. Cao D-W, Cai Y-L, Yang J, Zhao G-F (2007) PCR-RFLP analysis of Prunus pseudocerasus. J Northwest A & F Univ (Nat Sci Ed) 35:173–178Google Scholar
  6. Chang K-S, Chang C-S, Park TY, Roh MS (2007) Reconsideration of the Prunus serrulata complex (Rosaceae) and related taxa in eastern Asia. Bot J Linn Soc 154:35–54. doi:10.1111/j.1095-8339.2007.00631.x CrossRefGoogle Scholar
  7. Chen J, Li Q, Sun Z (2003) Study on shoot-tip culture of Prunus pseudocerasus. Acta Hortic Sin 30:317–318Google Scholar
  8. Chennaoui-Kourda H, Marghali S, Marrakchi M, Trifi-Farah N (2007) Genetic diversity of Sulla genus (Hedysarea) and related species using inter-simple sequence repeat (ISSR) markers. Biochem Syst Ecol 35:682–688. doi:10.1016/j.bse.2007.05.005 CrossRefGoogle Scholar
  9. Chu Q, Cao Y, Sun C, Zhang X (1995) Anatomy studies on the dwarfing characters of stem and leaf of dwarf cherry. J Laiyang Agric Coll 12:237–241Google Scholar
  10. Cruzan MB (1998) Genetic markers in plant evolutionary ecology. Ecology 79:400–412CrossRefGoogle Scholar
  11. Excoffier L, Smouse PE, Quattro JM (1992) Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction data. Genetics 131:479–491PubMedGoogle Scholar
  12. Feucht W, Dausend B (1976) Root induction in vitro of easy-to-root Prunus pseudocerasus and difficult-to-root Prunus avium. Sci Hortic (Amsterdam) 4:49–54. doi:10.1016/0304-4238(76)90064-9 CrossRefGoogle Scholar
  13. Futuyma DJ (1986) Evolutionary biology, 2nd edn. Sinauer Associates, Sunderland, MA, USAGoogle Scholar
  14. Gao H, Zhao L, Hu X, Sun L (2003) Study on the extraction and stability of cherry pigment. Food Ferment Ind 29:54–57Google Scholar
  15. Gorman GC, Renzi J (1979) Genetic distance and heterozygosity estimates in electrophoretic studies: effects of sample size. Copeia 1979:242–249. doi:10.2307/1443409 CrossRefGoogle Scholar
  16. Gutièrrez-Pesce P, Taylor K, Muleo R, Rugini E (1998) Somatic embryogenesis and shoot regeneration from transgenic roots of the cherry rootstock Colt (Prunus avium × P. pseudocerasus) mediated by pRi 1855 T-DNA of Agrobacterium rhizogenes. Plant Cell Rep 17:574–580. doi:10.1007/s002990050445 CrossRefGoogle Scholar
  17. Hamrick JL, Godt MJW (1989) Allozyme diversity in plant species. In: Brown AHD, Clegg MT, Kahler AL, Weir BS (eds) Plant population genetics breeding and germplasm resources. Sinauer, Sunderland, MA, pp 43–63Google Scholar
  18. Hamrick JL, Godt MJW, Sherman-Broyles SL (1992) Factors influencing levels of genetic diversity in woody plant species. New For 6:95–124. doi:10.1007/BF00120641 Google Scholar
  19. IPGRI (1993) Diversity for development – The strategy of the International Plant Genetic Resources Institute. IPGRI, Rome, p 66Google Scholar
  20. Kumar S, Tamura K, Nei M (2004) MEGA3: integrated software for molecular evolutionary genetics analysis and sequence alignment. Brief Bioinform 5:150–163. doi:10.1093/bib/5.2.150 PubMedCrossRefGoogle Scholar
  21. Li H-S, Chen G-Z (2004) Genetic diversity of mangrove plant Sonneratia caseolaris in Hainan Island based on ISSR analysis. Acta Ecol Sin 24:1657–1663Google Scholar
  22. Li J, Jin Z (2007) Genetic variation and differentiation in Torreya jackii Chun, an endangered plant endemic to China. Plant Sci 172:1048–1053. doi:10.1016/j.plantsci.2007.02.009 CrossRefGoogle Scholar
  23. Li X, Zhang S-L, Tao S-T, Wu H-Q, Wu J (2007) The differences of pollen germination and pollen tube growth between Chinese cherry and sweet cherry. Acta Bot Boreal-Occident Sin 27:429–434Google Scholar
  24. Liedloff A (1999) Mantel (Version 2.0): mantel nonparametric test calculator. Queensland University of Technology, Brisbane, AustraliaGoogle Scholar
  25. Malone CL, Knapp CR, Taylor JF, Davis SK (2003) Genetic consequences of Pleistocene fragmentation: isolation, drift, and loss of diversity in rock iguanas (Cyclura). Conserv Genet 4:1–15. doi:10.1023/A:1021885323539 CrossRefGoogle Scholar
  26. Mandegaran Z, Roberts AV, Hammatt N (1999) The ability of Prunus avium × P. pseudocerasus `Colt’ to form somatic embryos in vitro contrasts with the recalcitrance of P. avium. Plant Cell Tissue Organ Cult 59:57–63. doi:10.1023/A:1006476627434 CrossRefGoogle Scholar
  27. Mantel N (1967) The detection of disease clustering and a generalized regression approach. Cancer Res 27:209–220PubMedGoogle Scholar
  28. Mateu-Andrés I, Segarra-Moragues JG (2003) Patterns of genetic diversity in related taxa of Antirrhinum L assessed using allozymes. Biol J Linn Soc Lond 79:299–307. doi:10.1046/j.1095-8312.2003.00163.x CrossRefGoogle Scholar
  29. Nei M (1978) Estimation of average heterozygosity and genetic distance from a small number of individuals. Genetics 89:583–590PubMedGoogle Scholar
  30. Nei M, Roychoudhury AK (1974) Sampling variances of heterozygosity and genetic distance. Genetics 76:379–390PubMedGoogle Scholar
  31. Ochatt SJ, Cocking EC, Power JB (1987) Isolation, culture and plant regeneration of Colt cherry (Prunus avium × pseudocerasus) protoplasts. Plant Sci 50:139–143. doi:10.1016/0168-9452(87)90150-6 CrossRefGoogle Scholar
  32. Pesce PG, Rugini E (2004) Influence of plant growth regulators, carbon sources and iron on the cyclic secondary somatic embryogenesis and plant regeneration of transgenic cherry rootstock ‘Colt’ (Prunus avium × P. pseudocerasus). Plant Cell Tissue Organ Cult 79:223–232. doi:10.1007/s11240-004-0663-y CrossRefGoogle Scholar
  33. Qiu Y-X, Hong D-Y, Fu C-X, Cameron KM (2004) Genetic variation in the endangered and endemic species Changium smyrnioides (Apiaceae). Biochem Syst Ecol 32:583–596. doi:10.1016/j.bse.2003.08.004 CrossRefGoogle Scholar
  34. Rajora OP, Mosseler A (2001) Challenges and opportunities for conservation of forest genetic resources. Euphytica 118:197–212. doi:10.1023/A:1004150525384 CrossRefGoogle Scholar
  35. Reed DH, Frankham R (2003) Correlation between fitness and genetic diversity. Conserv Biol 17:230–237. doi:10.1046/j.1523-1739.2003.01236.x CrossRefGoogle Scholar
  36. Schaal BA, Hayworth DA, Olsen KM, Rauscher JT, Smith WA (1998) Phylogeographic studies in plants: problems and prospects. Mol Ecol 7:465–474. doi:10.1046/j.1365-294x.1998.00318.x CrossRefGoogle Scholar
  37. Shea KL, Furnier GR (2002) Genetic variation and population structure in central and isolated populations of balsam fir, Abies balsamea (Pinaceae). Am J Bot 89:783–791. doi:10.3732/ajb.89.5.783 CrossRefGoogle Scholar
  38. Slatkin M (1985) Gene flow in natural populations. Annu Rev Ecol Syst 16:393–430. doi:10.1146/annurev.ecolsys.16.1.393 CrossRefGoogle Scholar
  39. Slatkin M (1987) Gene flow and the geographic structure of natural populations. Science 236:787–792. doi:10.1126/science.3576198 PubMedCrossRefGoogle Scholar
  40. Sun Y (2007) The studies on the chemical constituents from the leaves of Prunus pseudocerasus Lindl. Jilin University, Changchun (Jilin, China), p 50Google Scholar
  41. Takahashi K, Tsutsumi Y, Ohtani H, Katsuki T (2006) Variation of fragrance constituents in the leaves of Prunus. Biochem Syst Ecol 34:127–135. doi:10.1016/j.bse.2005.07.022 CrossRefGoogle Scholar
  42. Templeton AR, Shaw K, Routman E, Davis SK (1990) The genetic consequences of habitat fragmentation. Ann Mo Bot Gard 77:13–27. doi:10.2307/2399621 CrossRefGoogle Scholar
  43. Thingsgaard K (2001) Population structure and genetic diversity of the amphiatlantic haploid peatmoss Sphagnum affine (Sphagnopsida). Heredity 87:485–496. doi:10.1046/j.1365-2540.2001.00939.x PubMedCrossRefGoogle Scholar
  44. Tomimatsu H, Ohara M (2003) Genetic diversity and local population structure of fragmented populations of Trillium camschatcense (Trilliaceae). Biol Conserv 109:249–258. doi:10.1016/S0006-3207(02)00153-2 CrossRefGoogle Scholar
  45. Wang G-L, Fang H-Y (1998) Plant gene engineering: principles and techniques. Science Press, BeijingGoogle Scholar
  46. Wang P-W, Liu H-Z, Chen Y-Q, Jin X-L, Qu B-H (2001) RAPD analysis of germplasm resources in Pyrus. Acta Hortic Sin 28:460–462Google Scholar
  47. Williams JGK, Kubelik AR, Livak KJ, Rafalski JA, Tingey SV (1990) DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Res 18:6531–6535. doi:10.1093/nar/18.22.6531 PubMedCrossRefGoogle Scholar
  48. Wolfe AD, Xiang Q-Y, Kephart SR (1998) Assessing hybridization in natural populations of Penstemon (Scrophulariaceae) using hypervariable intersimple sequence repeat (ISSR) bands. Mol Ecol 7:1107–1125. doi:10.1046/j.1365-294x.1998.00425.x PubMedCrossRefGoogle Scholar
  49. Xin Y, Si L, Chu Q, Qin S, Li G (1996) Anatomic structure on stems and leaves of short-bush plants of Pseudocerasus. Yantai Norm Univ J (Nat Sci Ed) 12:225–227Google Scholar
  50. Yeh FC, Yang R-C, Boyle TBJ, Ye Z-H, Mao JX (1997) POPGENE, the user-friendly shareware for population genetic analysis. Molecular Biology and Biotechnology Centre, University of Alberta, CanadaGoogle Scholar
  51. Yu D-J, Li C-L (1986) Flora of China, vol 38. Science Press, BeijingGoogle Scholar
  52. Zhang J-W, Bao M-Z (2007) Analysis of genetic diversity among Prunus mume cultivars via RAPD. J Beijing For Univ 29:54–58Google Scholar
  53. Zhang FM, Ge S (2002) Data analysis in population genetics I. Analysis of RAPD data with AMOVA. Biodivers Sci 10:438–444Google Scholar
  54. Zhang X-P, Li X-H, Qiu Y-X (2006) Genetic diversity of the endangered species Kirengeshoma palmata (Saxifragaceae) in China. Biochem Syst Ecol 34:38–47. doi:10.1016/j.bse.2005.05.007 CrossRefGoogle Scholar
  55. Zhao Y-H, Guo Y-S, Zhou Y, Zhang K-C, Li Z-X, Wang L (2005) Preliminary study on the optimization of regeneration and genetic transformation of Chinese cherry (Prunus pseudocerasus Lindl. cv. Duiying). Plant Physiol Commun 41:770–772Google Scholar
  56. Zietkiewicz E, Rafalski A, Labuda D (1994) Genome fingerprinting by simple sequence repeat (SSR)-anchored polymerase chain reaction amplification. Genomics 20:176–183. doi:10.1006/geno.1994.1151 PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • Miao-Miao Li
    • 1
  • Yu-Liang Cai
    • 2
  • Zeng-Qiang Qian
    • 3
  • Gui-Fang Zhao
    • 1
  1. 1.Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), College of Life SciencesNorthwest UniversityXianPeople’s Republic of China
  2. 2.College of HorticultureNorthwest A & F UniversityYanglingPeople’s Republic of China
  3. 3.School of Marine and Tropical Biology and Comparative Genomics CentreJames Cook UniversityTownsvilleAustralia

Personalised recommendations