The origin of Datura metel (Solanaceae): genetic and phylogenetic evidence

  • Mario Luna-Cavazos
  • Robert ByeEmail author
  • Meijun Jiao
Research Article


Using the analysis of nine isozyme systems and cladistic analysis of 32 morphological characters of the Mexican species of the section Dutra of the genus Datura, evidence was sought on the origin of the cultivated D. metel L. The genetic similarity and the phylogenetic relationship suggest that D. metel is related more closely to D. inoxia Mill. than to the other taxa of the section Dutra based upon the small genetic distance between them. The cladistic analysis revealed two main clades: the long-lived, tuberous rooted perennials (D. inoxia, D. lanosa A.S. Barclay ex Bye, D. metel, and D. wrightii Regel) and the tap-rooted annuals (D. discolor Bernh., D. kymatocarpa A.S. Barclay, D. leichhardtii F.V. Muell. ex Benth. ssp. pruinosa (Greenm.) Barclay ex Hammer (syn.: D. pruinosa Greenm.), D. reburra A.S. Barclay). Datura inoxia is the sister taxon of D. metel next to which is D. wrightii while D. lanosa is the basal taxon of this group. The combination of genetic and cladistic data indicates that D. inoxia is most likely the progenitor of D. metel.


Datura metel Domesticated plant Isozymes Mexico Phylogeny Solanaceae 



We thank Alfredo Cervantes, Fernando Chiang, Patricia Dávila, Alfonso Delgado, Patricia Escalante, Victor Fuentes, Les Landrum, Gary Nabhan, Juan Nuñez-Farfán, Porfirio Ramírez, David Spooner, Oswaldo Tellez, and John Turrell for their suggestions and helpful reviews during the development of this work. We acknowledge the bibliographic, field, and technical assistance of José Arellano, Jennifer Bain, Francisco Basurto, Bruce Bartholomew, Germán Bojórquez, Lourdes Carmona, Rafael Corral, Carlos Díaz, Francisco Felix, Oscar Ferrera, Raymundo García, Martín Hilerio, Elia Herrera, Ma. Antonieta Isidro, Edelmira Linares, Rigoberto López, Gilberto Márquez, Miguel Ángel Martínez, Myrna Mendoza, Gustavo Morales, Eduardo Palacios, Isaac Reyes, Lourdes Rico, Joel Rodríguez, Victoria Sosa, Richard Spellenberg, Miguel Trejo, and Hugh Wilson. The main electrophoresis works were carried out at the Laboratory of Electrophoresis of Instituto de Biología de la UNAM; special thanks go to Fernando Cervantes and members of his group. Nidia Pérez from the Instituto de Ecología de la UNAM provided initial guidance for electrophoresis techniques. Partial financial support for this work was provided by Comisión Nacional para el Conocimiento y Uso de la Biodiversidad (Project 088), International Cooperative Biodiversity Groups (“Bioactive agents from dryland biodiversity of Latin America” grant U01 TW 00316 from the National Institutes of Health, National Science Foundation, and USAID), and Universidad Nacional Autónoma de México. CONACYT provided partial scholarship support to Mario Luna-Cavazos. Dirección General de Asuntos del Personal Académico de la Universidad Nacional Autónoma de México provided a partial scholarship to Meijun Jiao.


  1. An-ming L (1986) Solanaceae in China. In: D’Arcy WG (ed) Solanaceae: biology and systematics. Columbia University Press, New York, pp 79–85Google Scholar
  2. Ashman TL, Schoen DJ (1994) How long should flowers live? Nature 371:788–791CrossRefGoogle Scholar
  3. Ashton GC, Braden AWH (1961) Serum β-globulin polymorphism in mice. Aust J Biol Sci 14:248–254Google Scholar
  4. Avise JC (1994) Molecular markers, natural history and evolution. Chapman & Hall, New YorkGoogle Scholar
  5. Baverstock PR, Moritz C (1996) Project design. In: Hillis DM, Moritz C, Mable BK (eds) Molecular systematics. Sinauer Associates Inc, Sunderland, pp 17–27Google Scholar
  6. Bolnick DI, Fitzpatrick BM (2007) Sympatric speciation: models and empirical evidence. Annu Rev Ecol Evol Syst 38:459–487CrossRefGoogle Scholar
  7. Brown AHD, Weir BS (1983) Measuring genetic variability in plant populations. In: Tanksley SD, Orton TJ (eds) Isozymes in plant genetics and breeding, part A. Elsevier, Amsterdam, pp 219–239Google Scholar
  8. Bye RA, Mata R, Pimentel J (1991) Botany, ethnobotany and chemistry of Datura lanosa (Solanaceae) in Mexico. Ann Inst Biol (UNAM) Serie Bot 61:21–42Google Scholar
  9. Carmona-Jiménez ML (2003) Estudio anatómico y morfológico de las semillas de Datura spp. en México. Tesis de Maestría en Ciencias, Facultad de Ciencias, Universidad Nacional Autónoma de México, México, DFGoogle Scholar
  10. Cheliak WM, Pitel JA (1984) Techniques for starch gel electrophoresis of enzymes from forest tree species. Petawa Forestry Institute, Canadian Forestry Service Agriculture, OttawaGoogle Scholar
  11. Colunga-García Marín P, Coello-Coello J, Eguiarte LE, Piñero D (1999) Isozymatic variation and phylogenetic relationships between henequen (Agave fourcroydes) and its wild ancestor A. angustifolia (Agavaceae). Am J Bot 86:115–123CrossRefGoogle Scholar
  12. Conkle MT, Hodgskiss PD, Nunnaly LB, Hunter SC (1982) Starch gel electrophoresis of conifer seeds: a laboratory manual. General Technical Report PSW-64, USDA Forest Service Pacific Southwest Forest and Range Experimental Station, Berkeley, CAGoogle Scholar
  13. Conklin ME, Smith HH (1971) Peroxidase isozymes: a measure of molecular variation in ten herbaceous species of Datura. Am J Bot 58:688–696CrossRefGoogle Scholar
  14. Darwin C (1883) The variation of animals and plants under domestication. D Appleton and Co, New YorkGoogle Scholar
  15. De Candolle A (1852) Prodromus systematis naturalis regni vegetabilis. Masson, ParisGoogle Scholar
  16. Deb DB (1979) Solanaceae in India. In: Hawkes JG, Lester RN, Skelding AD (eds) The biology and taxonomy of the Solanaceae. Academic Press, London, pp 87–112Google Scholar
  17. Dethier M, Demeyer K, Cordier Y (1993) Cultivation of Datura species for scopolamine and hyoscyamine production in Burundi. Acta Hortic 331:39–48Google Scholar
  18. DeWolf GP (1956) Notes on cultivated Solanaceae 2 Datura. Baileya 4:12–23Google Scholar
  19. Doebley J (1989) Isozymic evidence and the evolution of crop plants. In: Soltis DE, Soltis PS (eds) Isozymes in plant biology. Dioscorides Press, Portland, pp 165–191Google Scholar
  20. Evans WC (1979) Tropane alkaloids of the Solanaceae. In: Hawkes JG, Lester RN, Skelding AD (eds) The biology and taxonomy of the Solanaceae. Academic Press, London, pp 241–254Google Scholar
  21. Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evol 39:783–791CrossRefGoogle Scholar
  22. Fildes RA, Harris H (1966) Genetically determined variation of adenylate kinase in man. Nature 209:262–263CrossRefGoogle Scholar
  23. Fuentes V (1980) Solanaceas de Cuba I Datura L. Rev Jard Bot Nac Cuba 1:61–81Google Scholar
  24. Fuentes V, Lima H (1983) Isoenzimas peroxidasa en el género Datura L. III. Rev Jard Bot Nac Cuba 4(2):49–63Google Scholar
  25. Gentry JL, D’Arcy WG (1986) Solanaceae of Mesoamerica. In: D’Arcy WG (ed) Solanaceae: biology and systematics. Columbia University Press, New York, pp 15–26Google Scholar
  26. Haegi L (1976) Taxonomic account of Datura L. (Solanaceae) in Australia with a note on Brugmansia Pers. Aust J Bot 24:415–435CrossRefGoogle Scholar
  27. Hammer K, Romeike A, Tittel C (1983) Vorarbeiten zur monographischen Darstellung von Wildpflanzensortimenten: Datura L., section Dutra Bernh., Ceratocaulis Bernh. et Datura. Kulturpflanze 31:13–75CrossRefGoogle Scholar
  28. Hancock JF (1992) Plant evolution and the origin of crop species. Prentice Hall, NJGoogle Scholar
  29. Harlan JR (1992) Crops and man. American Society of Agronomy & Crop Science Society of America, MadisonGoogle Scholar
  30. Hegnauer R (1973) Chemotaxonomie der pflanzen. Birkhäuser Verlag, BaselGoogle Scholar
  31. Hegnauer R (1990) Chemotaxonomie der pflanzen. Birkhäuser Verlag, BaselGoogle Scholar
  32. Hernández-Verdugo S, Luna-Reyes R, Oyama K (2001) Genetic structure and differentiation of wild and domesticated populations of Capsicum annuum (Solanaceae) from Mexico. Plant Syst Evol 226:129–142CrossRefGoogle Scholar
  33. Jain SK, Borthakur SK (1986) Solanaceae in Indian tradition, folklore, and medicine. In: D’Arcy WG (ed) Solanaceae: biology and systematics. Columbia University Press, New York, pp 577–583Google Scholar
  34. Jiao M, Luna-Cavazos M, Bye R (2002) Allozyme variation in Mexican species and classification of Datura (Solanaceae). Plant Syst Evol 232:155–166CrossRefGoogle Scholar
  35. Leht M, Jaaska V (2002) Cladistic and phenetic of relationships in Vicia subgenus Vicia (Fabaceae) by morphology and isozymes. Plant Syst Evol 232:237–260CrossRefGoogle Scholar
  36. Linneaus C (1753) Species Plantarum. StockholmGoogle Scholar
  37. Lockwood TE (1973) Generic recognition of Brugmansia. Bot Mus Lealf Harv Univ 23:273–284Google Scholar
  38. Luna-Cavazos M, Jiao M, Bye R (2000) Phenetic analysis of Datura section Dutra (Solanaceae) in Mexico. Bot J Linn Soc 133:493–507CrossRefGoogle Scholar
  39. Mace EC, Gebhardt CG, Lester RN (1999) AFLP analysis of genetic relationships in the tribe Datureae (Solanaceae). Theor Appl Genet 99:634–641CrossRefGoogle Scholar
  40. McLeod MJ, Guttman SI, Eshbaugh WH, Rayle RE (1983) An electrophoretic study of evolution in Capsicum (Solanaceae). Evol 37:562–574CrossRefGoogle Scholar
  41. Nei M (1972) Genetic distance between populations. Am Nat 106:283–292CrossRefGoogle Scholar
  42. Ohnishi O (1998) Search for the wild ancestor of buckwheat III. The wild ancestor of cultivated common buckwheat and of tatary buckwheat. Econ Bot 52:123–133Google Scholar
  43. Ohnishi O, Matsuoka H (1996) Search for the wild ancestor of buckwheat II. Taxonomy of Fagopyrum species based on morphology, isozymes and cp-DNA variability. Genes Genet Syst 71:383–390CrossRefGoogle Scholar
  44. Oliver JL, Martinez-Zapater JM (1984) Allozyme variability and phylogenetic relationships in the cultivated potato (Solanum tuberosum) and related species. Plant Syst Evol 148:1–18CrossRefGoogle Scholar
  45. Olmstead RG, Palmer JD (1992) A chloroplast DNA phylogeny of the Solanaceae: subfamilial relationships and character evolution. Ann Mo Bot Gard 79:346–360CrossRefGoogle Scholar
  46. Palomino G, Viveros R, Bye RA (1988) Cytology of a five Mexican species of Datura L. (Solanaceae). Southwest Nat 33:85–90CrossRefGoogle Scholar
  47. Persson V, Knapp S, Blackmore S (1999) Pollen morphology and the phylogenetic analysis of Datura L. and Brugmansia Pers. In: Nee M, Symon D (eds) Solanaceae IV. Royal Botanic Gardens Kew, Richmond, pp 171–178Google Scholar
  48. Potter D, Doyle JJ (1992) Origins of the African yam bean (Sphenostylis stenocarpa, Leguminosae): Evidence from morphology, isozymes, chloroplast DNA, and linguistics. Econ Bot 46:276–292Google Scholar
  49. Poulik MD (1957) Starch electrophoresis in a discontinuous system of buffers. Nature 180:1477PubMedCrossRefGoogle Scholar
  50. Reynolds J, Tampio J (1983) Double flowers—A scientific study. Scientific and Academic Editions, New YorkGoogle Scholar
  51. Rieseberg LH, Beckstrom-Sternberg SM, Liston A, Arias DM (1991) Phylogenetic and systematic inferences from chloroplast DNA and isozyme variation in Helianthus sect. Helianthus (Asteraceae). Syst Bot 16:50–76CrossRefGoogle Scholar
  52. Rohlf FJ (2000) NTSYS-pc, numerical taxonomy and multivariate analysis system, version 2.1. Applied Biostatistics, Inc, New YorkGoogle Scholar
  53. Safford WE (1921) Synopsis of the genus Datura. J Wash Acad Sci 11:173–189Google Scholar
  54. Satina S (1959) Segmental interchanges and the species problem. In: Avery AG, Satina S, Rietsema J (eds) Blakeslee: the genus Datura. Ronald Press, New York, pp 220–234Google Scholar
  55. Satina S, Avery AG (1959) A review of the taxonomy history of Datura. In: Avery AG, Satina S, Rietsema J (eds) Blakeslee: the genus Datura. Ronald Press, New York, pp 16–47Google Scholar
  56. Soltis DE, Soltis PS (eds) (1989) Isozymes in plant biology. Dioscorides Press, PortlandGoogle Scholar
  57. Spooner DM, Lara-Cabrera S (2001) Sistemática molecular y evolución de plantas cultivadas. In: Hernández HM, García-Aldrete AN, Álvarez F, Ulloa M (eds) Enfoques contemporáneos para el estudio de la biodiversidad: Instituto de Biología. Universidad Nacional Autónoma de México, México, pp 57–114Google Scholar
  58. Stevens PF (1991) Character states, morphological variation, and phylogenetic analysis: a review. Syst Bot 16:553–583. doi: 10.2307/2419343 CrossRefGoogle Scholar
  59. Stuber CW, Johnson FM (1977) Genetic control and racial variation of β-glucosidase isozymes in maize (Zea mays L.). Biochem Genet 15:383–394PubMedCrossRefGoogle Scholar
  60. Stuber CW, Wendel JF, Goodman MM, Smith JSC (1988) Techniques and scoring procedures for starch gel electrophoresis of enzymes from maize (Zea mays L.). Technical Bulletin 286, North Carolina Agricultural Research Service, North Carolina State University, Raleigh, NCGoogle Scholar
  61. Stuessy TS (1990) Plant taxonomy, the systematic evaluation of comparative data. Columbia University Press, New YorkGoogle Scholar
  62. Swofford DL (1998) PAUP, phylogenetic analysis using parsimony. Version 4. Sinauer Associates, SunderlandGoogle Scholar
  63. Symon D, Haegi LAR (1991) Datura (Solanaceae) is a New World genus. In: Hawkes JG, Lester RN, Nee M, Estrada N (eds) Solanaceae III: taxonomy, chemistry, evolution. Royal Botanic Gardens Kew, Richmond, pp 197–210Google Scholar
  64. Tétényi P (1987) A chemotaxonomic classification of the Solanaceae. Ann Mo Bot Gard 74:600–608CrossRefGoogle Scholar
  65. Watrous L, Wheeler Q (1981) The outgroup method of phylogeny reconstruction. Syst Zool 30:1–16CrossRefGoogle Scholar
  66. Wendel JF, Weeden NF (1989) Visualization and interpretation of plant isozymes. In: Soltis DE, Soltis PS (eds) Isozymes in plant biology. Dioscorides Press, Portland, pp 5–45Google Scholar
  67. Zohary D, Hopf M (1994) Domestication of plants in the Old World. Clarendon Press, OxfordGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  1. 1.Programa de BotánicaColegio de PostgraduadosTexcocoMexico
  2. 2.Jardín Botánico, Instituto de BiologíaUniversidad Nacional Autónoma de MéxicoMexicoMexico

Personalised recommendations