Genetic and bioclimatic variation in Solanum pimpinellifolium

  • Elena Zuriaga
  • José M. Blanca
  • Laura Cordero
  • Alicia Sifres
  • William G. Blas-Cerdán
  • Rafael Morales
  • Fernando NuezEmail author
Research Article


Solanum pimpinellifolium, due to its close relationship to S. lycopersicum, has been a genetic source for many commercially important tomato traits. It is a wild species found in the coastal areas of Peru and Ecuador. In this study, the genetic variation of S. pimpinellifolium was studied using the diversity found in 10 microsatellites in 248 plants spread throughout its entire distribution area, including Ecuador, which has been underrepresented in previous studies. Peruvian and Ecuadorian accessions are genetically quite differentiated. A possible cause of these differences could be the non-uniform nature of the coastal Ecuadorian and Peruvian climates, seeing as an important correlation between genetic differentiation and climate has been found. In addition, Ecuadorian and south Peruvian accessions have a lower genetic diversity and a higher homozygosity due to their higher autogamy, lower population size, and possible colonization bottlenecks. The Galápagos Islands population is an extreme case, with no diversity, likely caused by a recent colonization from the northern continental Ecuadorian region where genetically identical plants have been found.


Andean Climate Colonization Genetic structure Microsatellite Solanum pimpinellifolium 



We are deeply grateful to Dr. Javier León, Dr. Roberto Mendoza, and Dr. Freddy Zuñiga of the Universidad Nacional de Piura; Dr. Ángel Díaz Celis, and Dr. Umberto Cardoso of the Universidad Nacional Pedro Ruiz Gallo; and to Dr. Rosa de Frutos Illán, Dr. Juan José Ruiz, María José Díez, and Dr. Jaume Prohens of the COMAV Institute. This study wouldn’t have been possible without their assistance and kind affection during the collecting expeditions organized with them throughout the years. The BBVA contributed to the funding of this research.

Supplementary material

10722_2008_9340_MOESM1_ESM.pdf (33 kb)
(PDF 34 kb)


  1. Barnaud A, Deu M, Garine E, McKey D, Joly HI (2007) Local genetic diversity of sorghum in a village in northern Cameroon: structure and dynamics of landraces. Theor Appl Genet 114:237–248PubMedCrossRefGoogle Scholar
  2. Belkhir K, Borsa P, Chikhi L, Rafaste N, Bonhomme T (1996) Genetix 4.04 Logiciel sous WindowsTM pour la genetiqué des populations. Laboratoire Génome, Populations, Interactions, Université de Montpellier II, Montpellier. Website (Accessed 13 November 2007)
  3. Bohs L, Olmstead RG (1997) Phylogenetic relationships in Solanum (Solanaceae) based on ndhF sequences. Syst Bot 22:5–17CrossRefGoogle Scholar
  4. Bonnet E, Van de Peer Y (2002) zt: a software tool for simple and partial Mantel tests. J Stat Softw 7:1–12Google Scholar
  5. Bouxin G (2005) Ginkgo, a multivariate analysis package. J Veg Sci 16:355–359CrossRefGoogle Scholar
  6. Caicedo AL, Schall BA (2004) Population structure and phylogeography of Solanum pimpinellifolium inferred from a nuclear gene. Mol Ecol 13:1871–1882PubMedCrossRefGoogle Scholar
  7. Cavalli-Sforza LL, Edwards AWF (1967) Phylogenetic analysis: models and estimation procedures. Evolution 32:550–570CrossRefGoogle Scholar
  8. Cronin JK, Bundock PC, Henry RJ, Nevo E (2007) Adaptive climatic molecular evolution in wild barley at the Isa defense locus. Proc Natl Acad Sci USA 104:2773–2778PubMedCrossRefGoogle Scholar
  9. Cuartero J, Nuez F, Díaz A (1984) Catalog of collections of Lycopersicon and Solanum pennellii from Northwest of Peru. TGC Report 34:43–46Google Scholar
  10. Darwin SC, Knapp S, Peralta IE (2003) Tomatoes in the Galápagos Islands: morphology of native and introduced species of Solanum section Lycopersicon (Solanaceae). Syst Biodiv 1:29–54CrossRefGoogle Scholar
  11. Del Rio AH, Bamberg JB (2002) Lack of association between genetic and geographical origin characteristics for the wild potato Solanum sucrense. Am J Potato Res 79:335–338CrossRefGoogle Scholar
  12. Eva HD, de Miranda EE, Di Bella CM, Gond V, Huber O, Sgrenzaroli M, Jones S, Coutinho A, Dorado A, Guimarães M, Elvidge C, Achard F, Belward AS, Bartholomé E, Baraldi A, De Grandi G, Vogt P, Fritz S, Hartley A (2002) A vegetation map of South America. Office for Official Publications of the European CommunitiesGoogle Scholar
  13. Excoffier L, Laval G, Schneider S (2005) Arlequin (version 3.0): an integrated software package for population genetics data analysis. Evol Bioinform Online 1:47–50PubMedGoogle Scholar
  14. Franks SJ, Sim S, Weis AE (2007) Rapid evolution of flowering time by an annual plant in response to a climate fluctuation. Proc Natl Acad Sci USA 104:1278–1282PubMedCrossRefGoogle Scholar
  15. Gower JC (1966) Some distance properties of latent roots and vector methods used in multivariate analysis. Biometrika 53:325–338Google Scholar
  16. Harter AV, Gardner KA, Falush D, Lentz DL, Bye RA, Rieseberg LH (2004) Origin of extant domesticated sunflowers in eastern North America. Nature 430:201–205PubMedCrossRefGoogle Scholar
  17. Hijmans RJ, Guarino L, Cruz M, Rojas E (2001) Computer tools for spatial analysis of plant genetic resources data: 1. DIVA-GIS. Plant Genet Resour Newsl 127:15–19Google Scholar
  18. IPGRI (1996) Descriptor for Tomato (Lycopersicon spp.). IPGRIGoogle Scholar
  19. Jump AS, Hunt J, Martínez-Izquierdo JA, Peñuelas J (2006) Natural selection and climate change: temperature-linked spatial and temporal trends in gene frequency in Fagus sylvatica. Mol Ecol 15:3469–3480PubMedCrossRefGoogle Scholar
  20. Juvik JA, Berlinger MJ, Ben-David T, Rudich J (1982) Resistance among accessions of the genera Lycopersicon and Solanum to four of the main insect pest of tomato in Israel. Phytoparasitica 10:145–156CrossRefGoogle Scholar
  21. Langella O (2002) Populations 1.2.28, Population genetic software. CNRSGoogle Scholar
  22. Li YC, Fahima T, Krugman T, Beiles A, Röder MS, Korol AB, Nevo E (2000) Parallel microgeographic patterns of genetic diversity and divergence revealed by allozyme, RAPD, and microsatellites in Triticum dicoccoides at Ammiad, Israel. Conserv Genet 1:191–207CrossRefGoogle Scholar
  23. Luckwill LC (1943) The genus Lycopersicon: an historical, biological, and taxonomic survey of the wild and cultivated tomatoes. Aberdeen University Press, AberdeenGoogle Scholar
  24. Marshall JA, Knapp S, Davey MR, Power JB, Cocking EC, Bennett MD, Cox AV (2001) Molecular systematics of Solanum section Lycopersicum (Lycopersicon) using the nuclear ITS rDNA region. Theor Appl Genet 103:1216–1222CrossRefGoogle Scholar
  25. Mason-Gamer RJ, Holsinger KE, Jansen RK (1995) Chloroplast DNA haplotype variation within and among populations of Coreopsis grandiflora. Mol Biol Evol 12:371–381Google Scholar
  26. McGregor CE, van Treuren R, Hoekstra R, van Hintum ThJL (2002) Analysis of the wild potato germplasm of the series Acaulia with AFLPs: implications for ex situ conservation. Theor Appl Genet 104:146–156PubMedCrossRefGoogle Scholar
  27. Mieslerova B, Lebeda A, Chetelat RT (2000) Variation in response of wild Lycopersicon and Solanum sp. against tomato powdery mildew (Oidium lycopersici). J Phytopathol 148:303–311CrossRefGoogle Scholar
  28. Miller P (1754) The gardener’s dictionary. C. Rivington, LondonGoogle Scholar
  29. Mitton JB, Duran KL (2004) Genetic variation in piñon pine, Pinus edulis, associated with summer precipitation. Mol Ecol 13:1259–1264PubMedCrossRefGoogle Scholar
  30. Monrchen M, Cuguen J, Michaelis G, Hanni C, Saumitou-Laprade P (1996) Abundance and length polymorphism of microsatellite repeats in Beta vulgaris L. Theor Appl Genet 92:326–333CrossRefGoogle Scholar
  31. Nei M (1977) F-statistics and analysis of gene diversity in subdivided populations. Ann Hum Genet 41:225–233PubMedCrossRefGoogle Scholar
  32. Nuez F, Cuartero J (1984) Colectas de Lycopersicon y Solanum pennellii en el Noroeste de Perú. Plant Genet Resour Newsl 58:42–45Google Scholar
  33. Nuez F, Morales R, Ruíz JJ, Fernández de Córdova P, Soler S, Valdivieso E, Solórzano V (1993) Recolección de especies hortícolas en Ecuador. Plant Genet Resour Newsl 96:29–33Google Scholar
  34. Nuez F, Morales R, Prohens J, Fernández de Córdova P, Soler S, Valdivieso E, Solórzano V (1999) Germplasm of Solanaceae horticultural crops in the South of Ecuador. Plant Genet Resour Newsl 120:44–47Google Scholar
  35. Nuez F, Picó B (1999) Collections of vegetable crops and wild relatives in the Centre for Conservation and Breeding of the Agricultural Biodiversity (Spain). Plant Genet Resour Newsl 118:68Google Scholar
  36. Nuez F, Prohens J, Blanca JM (2004) Relationships, origin, and diversity of Galápagos tomatoes: implications for the conservation of natural populations. Am J Bot 91:86–99CrossRefGoogle Scholar
  37. Owuor ED, Beharav A, Fahima T, Kirzhner VM, Korol AB, Nevo E (2003) Microscale ecological stress causes RAPD molecular selection in wild barley, Neve Yaar microsite, Israel. Genet Resour Crop Evol 50:213–223CrossRefGoogle Scholar
  38. Papa R, Gepts P (2003) Asymmetry of gene flow and differential geographical structure of molecular diversity in wild and domesticated common bean (Phaseolus vulgaris L.) from Mesoamerica. Theor Appl Genet 106:239–250PubMedGoogle Scholar
  39. Peralta IE, Spooner DM (2000) Classification of wild tomatoes: a review. Kurtziana 28:45–54Google Scholar
  40. Peralta IE, Spooner DM (2001) Granule-bound starch synthase (GBSSI) gene phylogeny of wild tomatoes (Solanum L. section Lycopersicon [Mill.] Wettst. subsection Lycopersicon). Am J Bot 88:1888–1902CrossRefGoogle Scholar
  41. Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959PubMedGoogle Scholar
  42. Powell W, Morgante M, Doyle JJ, McNicol JW, Tingey SV, Rafalski AJ (1996) Genepool variation in genus Glycine subgenus Soja revealed by polymorphic nuclear and chloroplast microsatellites. Genetics 144:793–803PubMedGoogle Scholar
  43. Qian H, Ricklefs RE, White PS (2005) Beta diversity of angiosperms in temperate floras of eastern Asia and eastern North America. Ecol Lett 8:15–22CrossRefGoogle Scholar
  44. Rick CM (1976) Natural variability in wild species of Lycopersicon and its bearing on tomato breeding. Genet Agr 30:249–259Google Scholar
  45. Rick CM, Chetelat RT (1995) Utilization of related wild species for tomato improvement. Acta Hortic 412:21–38Google Scholar
  46. Rick CM, Fobes JF (1975) Allozyme variation in the cultivated tomato and closely related species. Bull Torrey Bot Club 102:376–384CrossRefGoogle Scholar
  47. Rick CM, Holle M (1990) Andean Lycopersicon esculentum var. cerasiforme: genetic variation and its evolutionary significance. Econ Bot 44:69–78Google Scholar
  48. Rick CM, Zobel RW, Fobes JF (1974) Four peroxidase loci in red-fruited tomato species: genetics and geographic distribution. Proc Natl Acad Sci USA 71:835–839PubMedCrossRefGoogle Scholar
  49. Rick CM, Fobes JF, Holle M (1977) Genetic variation in Lycopersicon pimpinellifolium: evidence of evolutionary change in mating systems. Plant Syst Evol 127:139–170CrossRefGoogle Scholar
  50. Rick CM, Holle M, Thorp RW (1978) Rates of cross-pollination in Lycopersicon pimpinellifolium: impact of genetic variation in floral characters. Plant Syst Evol 129:31–44CrossRefGoogle Scholar
  51. Rick CM, Fobes JF, Tanksley SD (1979) Evolution of mating systems in Lycopersion hirsutum as deduced from genetic variation in electrophoretic and morphological characters. Plant Syst Evol 132:279–298CrossRefGoogle Scholar
  52. Rieseberg LH, Soltis DE (1991) Phylogenetic consequences of cytoplasmic flow in plants. Evol Trends Plants 5:65–84Google Scholar
  53. Roselius K, Stephan W, Stadler T (2005) The relationship of nucleotide polymorphism, recombination rate and selection in wild tomato species. Genetics 171:753–763PubMedCrossRefGoogle Scholar
  54. Sifres A, Picó B, Blanca JM, De Frutos R, Nuez F (2007) Genetic structure of Lycopersicon pimpinellifolium (Solanaceae) populations collected after the ENSO event of 1997–98. Genet Resour Crop Evol 54:359–377CrossRefGoogle Scholar
  55. Smulders MJM, Bredemeijer G, Rus-kortekass W, Arens P, Vosman B (1997) Use of short microsatellites from database sequences to generate polymorphisms among Lycopersicon esculentum cultivars and accessions of other Lycopersicon species. Theor Appl Genet 97:264–272CrossRefGoogle Scholar
  56. Warnock SJ (1991) Natural habitats of Lycopersicon species. HortScience 26:466–471Google Scholar
  57. Woodward FI (1987) Climate and plant distribution. Cambridge University Press, Cambridge, UKGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • Elena Zuriaga
    • 1
  • José M. Blanca
    • 1
  • Laura Cordero
    • 1
  • Alicia Sifres
    • 1
  • William G. Blas-Cerdán
    • 2
  • Rafael Morales
    • 3
  • Fernando Nuez
    • 1
    Email author
  1. 1.Instituto de Conservación y Mejora de la Agrodiversidad Valenciana (COMAV)Universidad Politécnica de ValenciaValenciaSpain
  2. 2.Universidad Nacional de TrujilloTrujilloPeru
  3. 3.Facultad de Ciencias AgrícolasUniversidad Nacional de LojaLojaEcuador

Personalised recommendations