Advertisement

Genetic Resources and Crop Evolution

, Volume 55, Issue 6, pp 811–822 | Cite as

Assessment and rationalization of genetic diversity of Papua New Guinea taro (Colocasia esculenta) using SSR DNA fingerprinting

  • D. SinghEmail author
  • E. S. Mace
  • I. D. Godwin
  • P. N. Mathur
  • T. Okpul
  • M. Taylor
  • D. Hunter
  • R. Kambuou
  • V. Ramanatha Rao
  • G. Jackson
Research Paper

Abstract

Taro (Colocasia esculenta) accessions were collected from 15 provinces of Papua New Guinea (PNG). The collection, totalling 859 accessions was collated for characterization and a core collection of 81 accessions (∼10%) was established on the basis of characterization data generated on 30 agro-morphological descriptors, and DNA fingerprinting using seven SSR primers. The selection of accessions was based on cluster analysis of the morphological data enabling initial selection of 20% accessions. The 20% sample was then reduced and rationalized to 10% based on molecular data generated by SSR primers. This represents the first national core collection of any species established in PNG based on molecular markers. The core has been integrated with core from other Pacific Island countries, contributing to a Pacific regional core collection, which is conserved in vitro in the South Pacific Regional Germplasm Centre at Fiji. The core collection is a valuable resource for food security of the South Pacific region and is currently being utilized by the breeding programmes of small Pacific Island countries to broaden the genetic base of the crop.

Keywords

Agro-morphology Characterization Colocasia esculenta Core collection DNA fingerprinting Simple sequence repeats (SSR) Taro 

Notes

Acknowledgements

These studies were jointly supported by the AusAID Taro Genetic Resources: Conservation and Utilization Project, Australian Centre for International Agricultural Research (ACIAR) Project CS2/94/43, International Plant Genetic Resources Institute (IPGRI) and the Secretariat of the Pacific Community (SPC).

References

  1. Bown D (1988) Aroids: plants of the arum family. Century Huthchinson, LondonGoogle Scholar
  2. Brown AHD (1989) Core collections: a practical approach to genetic resources management. Genome 31:818–824Google Scholar
  3. Brown AHD, Spillane C (1999) Implementing core collections—principles, procedures, progress, problems and promise. In: Johnson RC, Hodgkin T (eds) Core collections for today and tomorrow. International Plant Genetic Resources Institute, Rome, Italy, pp 1–9Google Scholar
  4. Caillon S, Quero-Garcia J, Lescure JP, Lebot V (2006) Nature of taro (Colocasia esculenta (L.) Schott) genetic diversity prevalent in a Pacific Ocean island, Vanua Lava, Vanuatu. Genet Resour Crop Evol 53:1273–1289CrossRefGoogle Scholar
  5. Engels JMM (2004) Plant genetic resources management and conservation strategies: problems and progress. Acta Hort 634:113–125Google Scholar
  6. Federer TW (1956) Augmented designs. Hawaiian Planters Rec 40:191–208Google Scholar
  7. Frankel OH (1984) Genetic perspectives of germplasm conservation. In: Arber W, Llimensee K, Peacock WJ, Starlinger P (eds) Genetic manipulation: impact on man and society. Cambridge University Press, Cambridge, UK, pp 161–170Google Scholar
  8. Godwin ID, Mace ES, Nurzuhairawaity (2001) Genotyping Pacific Island Taro (Colocasia esculenta (L.) Schott) Germplasm. In: Henry R (ed) Plant genotyping—the DNA fingerprinting of plants. CAB International, Wallingford, pp 109–128Google Scholar
  9. Hamza S, Hamida WB, Rebai A, Harrabi M (2004) SSR-based genetic diversity assessment among Tunisian winter barley and relationship with morphological traits. Euphytica 135:107–118CrossRefGoogle Scholar
  10. IPGRI (1999) Descriptor list for Colocasia. International Plant Genetic Resources Institute, Rome, ItalyGoogle Scholar
  11. Jaccard P (1908) Nouvelles Recherches Sue la Distribution Florale. Bull Soc Vaund Sci Nat 44:223–270Google Scholar
  12. Jeffers JNR (1967) Two case studies in the application of principal component analysis. Appl Stat 16:225–236CrossRefGoogle Scholar
  13. Johnson RC, Hodgkin T (eds) (1999) Core collections for today and tomorrow. IPGRI, RomeGoogle Scholar
  14. Kreike CM, Van Eck HJ, Lebot V (2004) Genetic diversity of taro, Colocasia esculenta (L.) Schott, in Southeast Asia and the Pacific. Theor Appl Genet 109:761–768PubMedCrossRefGoogle Scholar
  15. Lance GN, Williams WT (1967) A general theory of classification sorting strategies 1. Hierarchical systems. Comput J 9:373–380Google Scholar
  16. Lebot V (1992) Genetic vulnerability of Oceania’s traditional crops. Exp Agric 29:309–323CrossRefGoogle Scholar
  17. Lebot V, Aradhya KM (1991) Isozyme variation in taro (Colocasia esculenta (L.) Schott) from Asia and Oceania. Euphytica 56:55–66Google Scholar
  18. Lebot V, Prana MS, Kreike N, vanHeck H, Pardales J, Okpul T, Gendua T, Thongjiem M, Hue H, Viet N, Yap TC (2004) Characterisation of taro (Colocasia esculenta (L.) genetic resources in southeast Asia and Oceania. Genet Resour Crop Evol 51(4):381–392CrossRefGoogle Scholar
  19. Lebot V, Ivancic A, Abraham K (2005) The geographical distribution of allelic diversity, a practical means of preserving and using minor root crop genetic resources. Exp Agric 41:475–489CrossRefGoogle Scholar
  20. Mace E, Godwin I, Mathur P (2001) Development of recommended taro core collection based on molecular characterization. In: Report Taro Conservation Strategy Workshop (5–7 September 2001, Suva, Fiji). Secretariat of the Pacific Community, pp 19–24Google Scholar
  21. Mace ES, Godwin ID (2002) Development and characterization of polymorphic microsatellite markers in taro (Colocasia esculenta). Genome 45(5):823–832PubMedCrossRefGoogle Scholar
  22. Matus I, Gonzales IM, del Poso A (1996) Evaluation of phenotypic variation in a Chillean collection of garlic (Allium sativum L.) clones using multivariate analysis. Plant Genet Res Newsl 117:31–36Google Scholar
  23. Okpul T, Singh D, Gunua T, Wagih M (2004) Assessment of diversity using agro-morphological traits for selecting a core sample of Papua New Guinea taro (Colocasia esculenta) collection. Genet Resour Crop Evol 51:671–678CrossRefGoogle Scholar
  24. Okpul T, Mace ES, Godwin ID, Singh D, Wagih ME (2005) Evaluation of variability among breeding lines and cultivars of taro (Colocasia esculenta) in Papua New Guinea using ISSR fingerprinting and agro-morphological characterization. Plant Genet Res Newsl 143:8–16Google Scholar
  25. Quero-Garcia J, Noyer JL, Perrier X, Marchand JL, Lebot V (2004) A germplasm stratification of taro (Colocasia esculenta) based on agro-morphological descriptors, validation by AFLP markers. Euphytica 137:387–395CrossRefGoogle Scholar
  26. Rangai SS (1977) Taro. In: DPI Rural Development Series. Department of Agriculture and Livestock. Lae, Papua New GuineaGoogle Scholar
  27. Rohlf FJ (1998) NTSYS-pc: numerical taxonomy and multivariate system. Version 2.02i Exeter Software, New York, USAGoogle Scholar
  28. Sar SA, Wayi BM, Ghodake RD (1998) Review of research in Papua New Guinea for sustainable production of taro (Colocasia esculenta). Trop Agric (Trinidad) 75:134–138Google Scholar
  29. Shannon CE, Weaver W (1963) The mathematical theory of communication. University of Illinois Press, Urbana, IllinoisGoogle Scholar
  30. Sneath PHA, Sokal RR (1973) Numerical taxanomy: the principles and practice of numerical classification. Freeman, San Francisco, USAGoogle Scholar
  31. Sokal RR, Michener CD (1958) A statistical method for evaluating systematic relationships. Univ Kans Sci Bull 38:1409–1438Google Scholar
  32. Weir BS (1990) Genetic data analysis. Methods for discrete genetic data. Sinauer Associates, Sunderland, Mass, p 125Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2007

Authors and Affiliations

  • D. Singh
    • 1
    • 2
    • 3
    Email author
  • E. S. Mace
    • 4
    • 5
  • I. D. Godwin
    • 4
  • P. N. Mathur
    • 6
  • T. Okpul
    • 1
  • M. Taylor
    • 2
  • D. Hunter
    • 2
  • R. Kambuou
    • 1
  • V. Ramanatha Rao
    • 7
  • G. Jackson
    • 8
  1. 1.National Agricultural Research InstituteLaePapua New Guinea
  2. 2.Secretariat of the Pacific CommunitySuvaFiji
  3. 3.Plant Breeding Institute CobbittyUniversity of SydneySydneyAustralia
  4. 4.School of Land, Crop and Food SciencesUniversity of QueenslandBrisbaneAustralia
  5. 5.Department of Primary Industries and FisheriesHermitage Research StationWarwickAustralia
  6. 6.International Plant Genetic Resources InstituteOffice of South AsiaNew DelhiIndia
  7. 7.International Plant Genetic Resources InstituteRegional Office for Asia, the Pacific and OceaniaSerdangMalaysia
  8. 8.SydneyAustralia

Personalised recommendations