Advertisement

Genetic Resources and Crop Evolution

, Volume 54, Issue 8, pp 1653–1657 | Cite as

Cross-amplification and characterization of microsatellite loci for three species of Theobroma (Sterculiaceae) from the Brazilian Amazon

  • Maristerra R. LemesEmail author
  • Thieme M. Martiniano
  • Vanessa M. Reis
  • Camila P. Faria
  • Rogério Gribel
Short Communication

Abstract

This study reports on the cross-species amplification of 23 microsatellite markers previously developed for Theobroma cacao L. (Sterculiaceae), source of chocolate in three economically important Amazonian species of Theobroma (T. grandiflorum, T. subincanum, T. sylvestre). Thirteen of the 23 microsatellite loci tested were polymorphic across the three species at 2–13 alleles per locus. The observed heterozygosity per locus varied from 0.18 to 0.84 and expected heterozygosity ranged from 0.28 to 0.87. The high level of transferability and genetic information content of these microsatellite loci indicate their usefulness for population genetic, mating system and breeding studies of these economically important Amazonian fruit trees.

Keywords

Amazon Cocoa Genetic diversity SSR Transferability Tropical tree 

Notes

Acknowledgements

Financial support was provided by CNPq-Brazil (Grant no. 469926/2000-7 to RG), PROBIO/MMA-Brazil (Project contract # 0114-00/04), and European Union (GENEO-TROPECO Project contract # ERBIC18CT970149). We would like to thank Chris Dick and Jimmy Grogan for revision of the manuscript.

References

  1. Alves RM, Sebbenn AM, Artero AS, Figueira A (2006) Microsatellite loci transferability from Theobroma cacao to Theobroma grandiflorum. Mol Ecol Notes 6:1219–1221CrossRefGoogle Scholar
  2. Braga AC, Reis AMM, Leoi LT, Pereira RW, Collevatti RG (2007) Development and characterization of microsatellite markers for the tropical tree species Tabebuia aurea (Bignoniaceae). Mol Ecol Notes 7:53–56CrossRefGoogle Scholar
  3. Browder JO, Pedlowski MA (2000) Agroforestry performance on small farms in Amazonia: findings from the Rondonia Agroforestry Pilot Project. J Agroforestry Syst 49:63–83CrossRefGoogle Scholar
  4. Chase M, Kesseli R, Bawa K (1996) Microsatellite markers for population and conservation genetics of tropical trees. Am J Bot 83:51–57CrossRefGoogle Scholar
  5. Cheesman EE (1944) Notes on the nomenclature, classification and possible relationships of cocoa populations. Trop Agric 21:144–159Google Scholar
  6. Collevatti RG, Brondani RV, Grattapaglia D (1999) Development and characterization of microsatellite markers for genetic analysis of a Brazilian endangered tree species Caryocar brasiliense. Heredity 83:748–756PubMedCrossRefGoogle Scholar
  7. Creste S, Tulmann-Neto A, Figueira A (2001) Detection of single sequence repeat polymorphisms in denaturing polyacrylamide sequencing gels by silver staining. Plant Mol Biol Rep 19:299–306CrossRefGoogle Scholar
  8. Cuatrecasas J (1964) Cacao and its allies: a taxonomic revision of the genus Theobroma. Contr US Natl Herb 35:379–614Google Scholar
  9. Dayanandan S, Bawa K, Kesseli R (1997) Conservation of microsatellites among tropical trees (Leguminosae). Am J Bot 84:1658–1663CrossRefGoogle Scholar
  10. Doyle JJ, Doyle JL (1987) Isolation of plant DNA from fresh tissue. Focus 12:13–15Google Scholar
  11. Ellegren H (2004) Microsatellites: simple sequences with complex evolution. Nature Reviews Genetics 5:435–445PubMedCrossRefGoogle Scholar
  12. Jarne P, Lagoda PJL (1996) Microsatellites, from molecules to populations and back. Trends Ecol Evol 11:424–429CrossRefGoogle Scholar
  13. Lanaud C, Risterucci AM, Pieretti I, Falque M, Bouet A, Lagoda PJL (1999) Isolation and characterization of microsatellites in Theobroma cacao L. Mol Ecol 8:2141–2152PubMedCrossRefGoogle Scholar
  14. Lewis PO, Zaykin D (2001) Genetic data analysis: computer program for the analysis of allelic data. Version 1.0 (d16c). Free program distributed by the authors over the Internet from http://lewis.eeb.uconn.edu/lewishome/software.html
  15. Litt M, Luty JA (1989) A hypervariable microsatellite revealed by in vitro amplification of a dinucleotide repeat within the cardiac muscle action gene. Am J Hum Genet 444:397–401Google Scholar
  16. Morgante M, Olivieri AM (1993) PCR-amplified microsatellites as markers in plant genetics. Plant J 3:175–182PubMedCrossRefGoogle Scholar
  17. Paetkau D, Calvert W, Stirling I, Strobeck C (1995) Microsatellite analysis of population structure in Canadian polar bears. Mol Ecol 4:347–354PubMedGoogle Scholar
  18. Peakall R, Gilmore S, Keys W, Morgante M, Rafalski A (1998) Cross-species amplification of soybean (Glycine max) simple sequence repeats (SSRs) within the genus and other legume genera: implications for the transferability of SSRs in plants. Mol Biol Evol 15(10):1275–1278PubMedGoogle Scholar
  19. Roa AC, Chavarriaga-Aguirre P, Duque MC, Maya MM, Bonierbale MW, Iglesias C, Tohme J (2000) Cross-species amplification of cassava (Manihot esculenta) microsatellites: allelic polymorphism and degree of relationship. Am J Bot 87:1647–1655PubMedCrossRefGoogle Scholar
  20. Schmidt MJ (2003) Farming and patterns of agrobiodiversity on the Amazon floodplain in the vicinity of Mamirauá, Amazonas, Brazil. MSc thesis, University of Florida, Gainesville, USAGoogle Scholar
  21. Smith N, Dubois J, Current D, Lutz E, Clement C (1998) Agroforestry experiences in the Brazilian Amazon: constraints and opportunities. Pilot program to conserve the Brazilian Rain Forest, Ministério do Meio Ambiente, Recursos Hídricos e Amazônia Legal & World Bank, Brasília, DF, BrazilGoogle Scholar
  22. Tautz D (1989) Hypervariability of simple sequences as a general source for polymorphic DNA markers. Nucleic Acids Res 17:6463–6471PubMedCrossRefGoogle Scholar
  23. Varshney RK, Graner A, Sorrells ME (2005) Genic microsatellite markers in plants: features and applications. Trends Biotechnol 23:48–55PubMedCrossRefGoogle Scholar
  24. Weir BS (1996) Genetic data analysis II. Sinauer Associates, Sunderland, MA, USA, pp 209–212Google Scholar
  25. White GM, Powell W (1997). Cross-species amplification of SSR loci in the Meliaceae family. Mol Ecol 6:1195–1197CrossRefGoogle Scholar
  26. Zane L, Bargelloni L, Patarnello T (2002) Strategies for microsatellite isolation: a review. Mol Ecol 11:1–16PubMedCrossRefGoogle Scholar
  27. Zucchi MI, Brondani RPV, Pinheiro JB, Brondani C, Vencovski R (2002) Transferability of microsatellite markers from Eucalyptus spp. to Eugenia dysenterica (Myrtaceae family). Mol Ecol Notes 2:512–513CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2007

Authors and Affiliations

  • Maristerra R. Lemes
    • 1
    Email author
  • Thieme M. Martiniano
    • 1
  • Vanessa M. Reis
    • 1
  • Camila P. Faria
    • 1
  • Rogério Gribel
    • 1
  1. 1.Laboratório de Genética e Biologia Reprodutiva de PlantasInstituto Nacional de Pesquisas da AmazôniaManausBrazil

Personalised recommendations