Advertisement

Genetic Resources and Crop Evolution

, Volume 54, Issue 8, pp 1797–1806 | Cite as

Resistance traits and AFLP characterization of diploid primitive tuber-bearing potatoes

  • Riccardo Aversano
  • Maria Raffaella Ercolano
  • Luigi Frusciante
  • Luigi Monti
  • James M. Bradeen
  • Gennaro Cristinzio
  • Astolfo Zoina
  • Nicola Greco
  • Salvatore Vitale
  • Domenico Carputo
Research Article

Abstract

Worldwide, a variety of pathogens negatively affect potato production, resulting in an estimated 22% annual yield reduction. Wild Solanum species represent a unique gene pool where all the traits necessary to improve the cultivated potato can be found. Therefore, breeding efforts for improved disease resistance and research aimed at characterizing wild germplasm have been extensively made. In this paper, sources of resistance to Phytophthora infestans, Erwinia carotovora subsp. carotovora, Fusarium solani and Globodera spp. have been investigated in several clones of two Solanum species originating from Central Mexico (S. bulbocastanum and S. cardiophyllum). Interestingly, we found sources of combined resistance to late blight and bacterial soft rot. This is an important finding considering that the development of resistant potato varieties has been hindered by the scarcity of resistant germplasm. In addition, we explored molecular differences within and between the two species generating AFLP fingerprints. By means of six primer pair combinations, we found 13 and 16 putative species-specific AFLP markers for S. bulbocastanum and S. cardiophyllum, respectively, and a bounty of markers useful for mapping, MAS, and cloning purposes. The phenotypic and molecular information associated to S. bulbocastanum and S. cardiophyllum for designing strategies of assisted selection are discussed.

Keywords

Germplasm Molecular markers Solanum bulbocastanum S. cardiophyllum 

Notes

Acknowledgments

Contribution no. 127 from Department of Soil, Plant and Environmental Science. This research was carried out within the project “Caratterizzazione ed utilizzazione di specie selvatiche diploidi di patata originarie del Sud America” founded by Italian Ministry of Agriculture (MiPAF).

References

  1. Bamberg JB, Martin MW, Schartner JJ (1994) Elite selections of tuber-bearing Solanum species germplasm. Inter-Regional Potato Introduction Station, NRSP−6, pp 56Google Scholar
  2. Barone A (2004) Molecular marker-assisted selection for potato breeding. Am J Potato Res 81:111–117Google Scholar
  3. Barroso GM, Peixoto AL, Costa CG, Ichaso CLF, Guimarães EF, Lima HC (1986) Sistemática de Angiospermas do Brasil, vol 3. Editora da Universidade Federal de Viçosa, Viçosa, BrazilGoogle Scholar
  4. Bisognin DA, Douches DS (2002) Genetic diversity in diploid and tetraploid late blight resistant potato germplasm. Hort Sci 37(1):178–183Google Scholar
  5. Caicedo AL, Schaal BA (2004) Heterogeneous evolutionary processes affect R gene diversity in natural populations of Solanum pimpinellifolium. Proc Natl Acad Sci USA 101:17444–17449PubMedCrossRefGoogle Scholar
  6. Caicedo AL, Schaal BA, Kunkel BN (1999) Diversity and molecular evolution of the Rps2 resistance gene in Arabidopsis thaliana. Proc Natl Acad Sci USA 96:302–306PubMedCrossRefGoogle Scholar
  7. Carputo D, Aversano R, Frusciante L (2005) Breeding potato for quality traits. Acta Hort 684:55–64Google Scholar
  8. Carputo D, Barone A (2005) Ploidy level manipulations in potato through sexual hybridization. Ann Appl Biol 146:71–79CrossRefGoogle Scholar
  9. Chen Q, Kawchuk ML, Lynch DR, Goettel MS, Fujimoto DK (2003) Identification of late blight, Colorado potato beetle, and black leg resistance in three Mexican and two South American wild 2x (1EBN) Solanum species. Am J Potato Res 80:9–19Google Scholar
  10. Chen Q, Lynch D, Platt HW, Li HY, Shi Y, Li HJ, Deasley D, Rakosy-Tican L, Theme R (2004) Interspecific crossability and cytogenetic analysis of sexual progenies of Mexican wild diploid 1EBN species Solanum pinnatisectum and S. cardiophyllum. Am J Potato Res 81:159–169CrossRefGoogle Scholar
  11. Cristinzio G, Testa A (1997) Occurrence of the A2 mating type and self isolates of Phytophthora infestans in Italy. J Plant Pathol 79:121–123Google Scholar
  12. El-Kharbotly A, Leonards-Schippers C, Huigen DJ, Jacobsen E, Pereira A, Stiekema WJ, Salamini F, Gebhardt C (1994) Segregation analysis and RFLP mapping of the R1 and R3 alleles conferring race-specific resistance to Phytophthora infestans in progeny of dihaploid potato parents. Mol Gen Genet 242:749–754PubMedCrossRefGoogle Scholar
  13. El-Kharbotly A, Palomino-Sánchez C, Salamini F, Jacobsen E, Gebhardt C (1996) R6 and R7 alleles of potato conferring race-specific resistance to Phytophthora infestans (Mont.) de Bary identified genetic loci clustering with the R3 locus on chromosome XI. Theor Appl Genet 92:880–884CrossRefGoogle Scholar
  14. Garelik G (2002) Taking the bite out of potato blight. Science 298:1702–1704PubMedCrossRefGoogle Scholar
  15. Gebhardt C, Valkonen JPT (2001) Organization of genes controlling disease resistance in the potato genome. Annu Rev Phytopath 39:79–102CrossRefGoogle Scholar
  16. Grunwald NJ, Flier WG (2005) The biology of Phytophthora infestans at its center of origin. Annu Rev Phytopath 43:171–190CrossRefGoogle Scholar
  17. Hanneman RE Jr, Bamberg JB (1986) Inventory of tuber-bearing Solanum species. Bulletin, 533 of Research Division of the College of Agriculture and Life Sciences. University of Wisconsin, Madison USA, pp 216Google Scholar
  18. Hawkes J (1990) The potato: evolution, biodiversity and genetic resources. Belhaven Press, OxfordGoogle Scholar
  19. Helgeson JP, Haberlach GT, Ehlenfeldt MK, Hunt G, Pohlman JD, Austin S (1993) Fertile somatic hybrids of potato and wild Solanum species: potential for use in breeding programs. Am Potato J 70:437–452Google Scholar
  20. Hermsen JGT, Ramanna MS (1973) Double-bridge hybrids of Solanum bulbocastanum and cultivars of Solanum tuberosum. Euphytica 22:457–466CrossRefGoogle Scholar
  21. Kort J, Ross H, Rumpenhorst HJ, Stone AR (1977) An International scheme for identifying and classifying pathotypes of potato cyst nematodes Globodera rostochiensis and G. pallida. Nematologica 23:333–339CrossRefGoogle Scholar
  22. Kuang H, Woo SS, Meyers BC, Nevo E, Michelmore RW (2004) Multiple genetic processes result in heterogeneous rates of evolution within the major cluster disease resistance genes in lettuce. Plant cell 16:2870–2894PubMedCrossRefGoogle Scholar
  23. Lara-Labrera SI, Spooner DM (2004) Taxonomy of North and Central American diploid wild potato (Solanum sect. Petota) species: AFLP data. Plant Syst Evol 248:129–142CrossRefGoogle Scholar
  24. Leonards-Schippers C, Gieffers W, Salamini F, Gebhardt C (1992) The R1 gene conferring race-specific resistance to Phytophthora infestans in potato is located on potato chromosome V. Mol Gen Genet 233:278–283PubMedCrossRefGoogle Scholar
  25. Leonards-Schippers C, Gieffers W, Schäfer-Pregl R, Ritter E, Knapp SJ, Salamini F, Gebhardt C (1994) Quantitative resistance to Phytophthora infestans in potato: a case study for QTL mapping in an allogamous plant species. Genetics 137:67–77PubMedGoogle Scholar
  26. Mauricio R, Stahl EA, Korves T, Tian D, Kreitman M, Bergelson J (2003) Natural selection for polymorphism in the disease resistance gene Rps2 of Arabidopsis thaliana. Genetics 163:735–746PubMedGoogle Scholar
  27. Murashige T, Skoog F (1962) A revised medium from rapid growth and bioassays with tobacco tissue cultures. Physiol Plantarum 15:251–258Google Scholar
  28. Naess SK, Bradeen JM, Wielgus SM, Haberlach GT, McGrath JM, Helgeson JP (2000) Resistance to late blight in Solanum bulbocastanum is mapped to chromosome 8. Theor Appl Genet 101:697–704CrossRefGoogle Scholar
  29. Orczyk W, Przetakiewicz J, Nadoloska-Orczyk A (2003) Somatic hybrids of Solanum tuberosum—application to genetics and breeding. Plant Cell Tissue Organ Cult 74:1–13CrossRefGoogle Scholar
  30. Rohlf FJ (1989) NTSYSpc. Numerical Taxonomy and Multivariate Analysis System, vol 2.0, Exeter Software, Setauket, New York, USAGoogle Scholar
  31. Rose LE, Bittner-Eddy PD, Langley CH, Holub EB, Michelmore RW, Beynon JL (2004) The maintenance of extreme amino acid diversity at the disease resistance gene, RPP13, in Arabidopsis thaliana. Genetics 166:1517–1527PubMedCrossRefGoogle Scholar
  32. Seinhorst JW (1974) Separation of Heterodera cysts from organic debris using ethanol. Nematologica 20:367–369Google Scholar
  33. Seinhorst JW, Ouden H den (1966) An improvement of Bijloo’s method for determining the egg content of Heterodera cysts. Nematologica 12:170–171CrossRefGoogle Scholar
  34. Sirianni P (1998) Superamento di barriere di incompatibilita’ interspecifica attraverso la manipolazione della ploidia e dell’ ‘Endosperm Balance Number’ per l’introgressione di geni utili in Solanum tuberosum L. (2n = 4x = 48) MSc Thesis, University of Naples “Federico II”, ItalyGoogle Scholar
  35. Smith SM, Pryor AJ, Hulbert SH (2004) Allelic and haplotypic diversity at the Rp1 rust resistance locus of maize. Genetics 167:1939–1947PubMedCrossRefGoogle Scholar
  36. Song J, Bradeen JM, Naess SK, Raasch JA, Wielgus SM, Haberlach GT, Liu J, Kuang H, Austin-Phillips S, Buell CR, Helgeson JP, Jiang J (2003) Gene RB cloned from Solanum bulbocastanum confers broad spectrum resistance to potato late blight. Proc Natl Acad Sci USA 100:9128–9133PubMedCrossRefGoogle Scholar
  37. Stahl EA, Dwyer G, Mauricio R, Kreitman M, Bergelson J (1999) Dynamics of disease resistance polymorphism at the Rpm1 locus of Arabidopsis. Nature 400:667–671PubMedCrossRefGoogle Scholar
  38. Tanksley SD, McCouch SR (1997) Seed bank and molecular maps: unlocking genetic potential from the wild. Science 277:1063–1066PubMedCrossRefGoogle Scholar
  39. Thanassoulopoulos CC, Kitsos GT (1985) Studies on Fusarium wilt of potatoes. 1. Plant wilt and tuber infection in naturally infected fields. Potato Res 28:507–514CrossRefGoogle Scholar
  40. Umaerus V, Umaerus M (1994) Inheritance of resistance to late blight. In: Bradshow JE, Mackay GR (eds) Potato Genetics. CAB International, Wallingford, UKGoogle Scholar
  41. van der Hoorn RAL, Kruijt M, Roth R, Brandwagt BF, Joosten MHAJ, De Wit PJGM (2001) Intragenic recombination generated two distinct Cf genes that mediate AVR9 recognition in the natural population of Lycopersicon pimpinellifolium. Proc Natl Acad Sci USA 98:10439–10498CrossRefGoogle Scholar
  42. van der Vossen E, Gros J, Sikkema A, Muskens M, Wouters D, Wolters P, Pereira A, Allefs S (2005) The Rpi-blb2 gene from Solanum bulbocastanum is an Mi−1 gene homolog conferring broad-spectrum late blight resistance in potato. Plant J 44:208–222PubMedCrossRefGoogle Scholar
  43. van der Vossen E, Sikkema A, Hekkert BteL, Gros J, Stevens P, Muskens M, Wouters D, Pereira A, Stiekema W, Allefs S (2003) An ancient R gene from the wild potato species Solanum bulbocastanum confers broad-spectrum resistance to Phytophthora infestans in cultivated potato and tomato. Plant J 36:867–882PubMedCrossRefGoogle Scholar
  44. Vos P, Hogers R, Bleker M (1995) AFLP: a new technique for DNA fingerprinting. Nucleic Acid Res 23:4407–4414PubMedCrossRefGoogle Scholar
  45. Watanabe J, Orrillo M, Watanabe KN (1999) Evaluation of in vitro chromosome-doubled regenerates with resistance to potato tuber moth [Phthorimaea opercullella (Zeller)]. Plant Biotechnol 16:225–230Google Scholar
  46. Xiao S, Emerson B, Ratanasut K, Patrick E, O’Neill C, Bancroft I, Turner JG (2004) Origin and maintenance of a broad-spectrum disease resistance locus in Arabidopsis. Mol Bio Evol 21:1661–1672CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2007

Authors and Affiliations

  • Riccardo Aversano
    • 1
  • Maria Raffaella Ercolano
    • 1
  • Luigi Frusciante
    • 1
  • Luigi Monti
    • 1
  • James M. Bradeen
    • 2
  • Gennaro Cristinzio
    • 3
  • Astolfo Zoina
    • 3
  • Nicola Greco
    • 4
  • Salvatore Vitale
    • 5
  • Domenico Carputo
    • 1
  1. 1.Department of Soil, Plant and Environmental SciencesUniversity of Naples “Federico II”PorticiItaly
  2. 2.Department of Plant PathologyUniversity of MinnesotaSt. PaulUSA
  3. 3.Istituto di Patologia Vegetale, University of Naples “Federico II”PorticiItaly
  4. 4.Istituto per la Protezione delle Piante, Sezione di Bari, C.N.R.BariItaly
  5. 5.C.R.A. – Istituto Sperimentale per la Patologia VegetaleRomaItaly

Personalised recommendations