Advertisement

Genetic Resources and Crop Evolution

, Volume 54, Issue 8, pp 1717–1725 | Cite as

Database derived microsatellite markers (SSRs) for cultivar differentiation in Brassica oleracea

  • S. Louarn
  • A. M. Torp
  • I. B. Holme
  • S. B. Andersen
  • B. D. JensenEmail author
Research Article

Abstract

Fifty-nine Brassica oleracea cultivars, belonging to five botanical varieties, were evaluated for microsatellite (SSR) polymorphisms using 11 database sequence derived primer pairs. The cultivars represented 12 broccoli (Brassica oleracea var. italica), ten Brussels sprouts (B. o. var. gemmifera), 21 cabbage (B. o. var. capitata, including the groups white and red cabbage), six savoy cabbage (B. o. var. sabauda), and ten cauliflower (B. o. var. botrytis) cultivars from 13 seed suppliers. The 11 primer pairs amplified in total 47 fragments, and differentiated 51 of the cultivars, whereas the remaining eight cultivars were differentiated from the rest in four inseparable pairs. All SSR markers, except one, produced a polymorphic information content (PIC value) of 0.5 or above. The average diversity for all markers within the tested material was 0.64. There was no major difference in the diversity within botanical varieties and groups. The cluster analysis and the resulting dendrogram showed that the cultivars tended to group within these taxonomic units. The present study substantiates the use of microsatellite markers as a powerful tool for cultivar differentiation and identification in vegetable brassicas.

Keywords

Brassica oleracea Broccoli Brussels sprouts Cabbage Cauliflower Diversity Fingerprinting Genetic distance 

Notes

Acknowledgements

The authors thank seed companies Agrisemen, Bejo Zaaden, Clause, Hild Samen, L. Dæhnfeldt, Nickerson Zwaan, Royal Sluis, Sakata, Seminis, S&G/Syngenta, Takii & Co., Tézier, Tokita Seed Co. and The Nordic Gene Bank, Sweden, and Crucifer Genetics Cooperative Michigan, USA, for provision of seed samples. A special thank to Anna Jansson and Peter Øllgaard, Olssons Frö AB, Gitte Kjeldsen Bjørn, Danish Insitute of Agricultural Sciences, and Henrik Stenkilde, The Royal Veterinary and Agricultural University , for sourcing cultivars. The technical assistance of Lisa Borch and Mette Sylvan is highly appreciated. David B. Collinge is thanked for critical comments to the manuscript. This study was supported by the Danish Council of Development Research (DANIDA/RUF project no. 91116).

References

  1. Allen BW, Goodenough PW, Lee JSC, Rutherford PP (1986) Evolution of cauliflower types grown in Great Britain as indicated by the isoenzyme composition of the cauliflower curds. Euphytica 35:25–31CrossRefGoogle Scholar
  2. Anderson JA, Churchill GA, Autrique JE, Tanksley SD, Sorrells ME (1993) Optimizing parental selection for genetic linkage maps. Genome 36:181–186Google Scholar
  3. Bassam BJ, Caetano-Anollés G, Gresshoff PM (1991) Fast and sensitive silver staining of DNA in polyacrylamide gels. Anal Biochem 196:80–83PubMedCrossRefGoogle Scholar
  4. Becker J, Heun M (1995) Barley microsatellites: allele variation and mapping. Plant Mol Biol 27:835–845PubMedCrossRefGoogle Scholar
  5. Bredemeijer GMM, Arens P, Wouters D, Visser D, Vosman B (1998) The use of semi-automated fluorescent microsatellite analysis for tomato cultivar identification. Theor Appl Genet 97:584–590CrossRefGoogle Scholar
  6. Diwan N, Cregan PB (1997) Automated sizing of fluorescent-labeled simple sequence repeat (SSR) markers to assay genetic variation in soybean. Theor Appl Genet 95:723–733CrossRefGoogle Scholar
  7. Gray AR (1982) Taxonomy and evolution of broccoli (Brassica oleracea var. italica). Econ Bot 36:397–410Google Scholar
  8. Helm J (1963) Morphologisch-taxonomische Gliederung der Kultursippen von Brassica oleracea L. Kulturpflanze 11:92–210CrossRefGoogle Scholar
  9. Holme IB, Torp AM, Hansen LN, Andersen SB (2004) Quantitative trait loci affecting plant regeneration from protoplasts of Brassica oleracea. Theor Appl Genet 108:1513–1520PubMedCrossRefGoogle Scholar
  10. Kresovich S, Szewc-McFadden AK, Bliek SM, McFerson JR (1995) Abundance and characterization of simple sequence repeats (SSRs) isolated from a size-fractionated genomic library of Brassica napus L. (rapeseed). Theor Appl Genet 91:206–211CrossRefGoogle Scholar
  11. Lagercrantz U, Ellegren H, Andersson L (1993) The abundance of various polymorphic microsatellite motifs differs between plants and vertebrates. Nucleic Acids Res 21:1111–1115PubMedCrossRefGoogle Scholar
  12. Lorenz OA, Maynard DN (1988) Knott’s handbook for vegetable growers. John Wiley & Sons, New YorkGoogle Scholar
  13. Lowe AJ, Moule C, Trick M, Edwards KJ (2004) Efficient large-scale development of microsatellites for marker and mapping application in Brassica crop species. Theor Appl Genet 108:1103–1112PubMedCrossRefGoogle Scholar
  14. Lund B, Ortiz R, Skovgaard IM, Waugh R, Andersen SB (2003) Analysis of potential duplicates in barley gene bank collections using re-sampling of microsatellite data. Theor Appl Genet 106:1129–1138PubMedGoogle Scholar
  15. Mithen RF, Lewis BG, Heaney RK, Fenwick GR (1987): Glucosinolates of wild and cultivated Brassica species. Phytochem 26:1969–1973CrossRefGoogle Scholar
  16. Morgante M, Olivieri AM (1993) PCR-amplified microsatellites as markers in plant genetics. Plant J 3:175–182PubMedCrossRefGoogle Scholar
  17. Nandakumar N, Singh AK, Sharma RK, Mohapatra T, Prabhu KV, Zaman FU (2004) Molecular fingerprinting of hybrids and assessment of genetic purity of hybrid seeds in rice using microsatellite markers. Euphytica 136:257–264CrossRefGoogle Scholar
  18. Nei M (1987) Molecular evolutionary genetics. Columbia University Press, New YorkGoogle Scholar
  19. Nienhuis J, Slocum MK, DeVos DA, Muren R (1993) Genetic similarity among Brassica oleracea L. genotypes as measured by restriction fragment length polymorphisms. J Am Soc Hort Sci 118:298–303Google Scholar
  20. Piquemal J, Cinquin E, Couton F, Rondeau C, Seignoret E, Doucet I, Perret D, Villeger M-J, Vincourt P, Blanchard P (2005) Construction of an oilseed rape (Brassica napus L.) genetic map with SSR markers. Theor Appl Genet 111:1514–1523PubMedCrossRefGoogle Scholar
  21. Purugganan MD, Boyles AL, Suddith JI (2000) Variation and selection at the CAULIFLOWER floral homeotic gene accompanying the evolution of domesticated Brassica oleracea. Genetics 155:855–862PubMedGoogle Scholar
  22. Rosa EAS, Heaney RK, Fenwick GR, Portas CAM (1997) Glucosinolates in crop plants. Hortic Rev 19:99–215Google Scholar
  23. Rozen S, Skaletsky H (2000) Primer3 on the WWW for general users and for biologist programmers. In: Misener S, Krawetz SA (eds) Bioinformatics methods and protocols. Methods in molecular biology, vol. 132. Humana Press Inc., Totowa, New Jersey, pp 365–386CrossRefGoogle Scholar
  24. Rubatzky VE, Yamaguchi M (1997) World vegetables. Principles, production, and nutritive values. Chapman & Hall, New YorkGoogle Scholar
  25. Sharp PJ, Kreis M, Shewry PR, Gale MD (1988) Location of ß-amylase sequences in wheat and its relatives. Theor Appl Genet 75:286–290CrossRefGoogle Scholar
  26. Smith LB, King GJ (2000) The distribution of BoCAL-a alleles in Brassica oleracea is consistent with a genetic model for curd development and domestication of the cauliflower. Mol Breed 6:603–613CrossRefGoogle Scholar
  27. Smulders MJM, Bredemeijer G, Rus-Kortekaas W, Arens P, Vosman B (1997) Use of short microsatellites from database sequences to generate polymorphisms among Lycopersicon esculentum cultivars and accessions of other Lycopersicon species. Theor Appl Genet 97:264–272CrossRefGoogle Scholar
  28. Snogerup S (1980) The wild forms of the Brassica oleracea group (2n = 18) and the possible relations to the cultivated ones. In: Tsunoda S, Hinata K, Gomez-Campo C (eds) Brassica crops and wild allies. Japanese Scientific Society Press, Tokyo, pp 121–132Google Scholar
  29. Song KM, Osborn TC, Williams PH (1988) Brassica taxonomy based on nuclear restriction fragment length polymorphisms (RFLPs). 2. Preliminary analysis of subspecies within B. rapa (syn. campestris) and B. oleracea. Theor Appl Genet 76:593–600CrossRefGoogle Scholar
  30. Song K, Osborn TC, Williams PH (1990) Brassica taxonomy based on nuclear restriction fragment length polymorphisms (RFLPs). 3. Genome relationships in Brassica and related genera and the origin of B. oleracea and B. rapa (syn. campestris). Theor Appl Genet 79:497–506CrossRefGoogle Scholar
  31. Struss D, Plieske J (1998) The use of microsatellite markers for detection of genetic diversity in barley populations. Theor Appl Genet 97:308–315CrossRefGoogle Scholar
  32. Temnykh S, DeClerck G, Lukashova A, Lipovich L, Cartinhour S, McCouch S (2001) Computational and experimental analysis of microsatellites in rice (Oryza sativa L.): Frequency, length variation, transposon associations, and genetic marker potential. Genome Res 11:1441–1452PubMedCrossRefGoogle Scholar
  33. Tonguç M, Griffiths PD (2004) Genetic relationships of Brassica vegetables determined using database derived sequence repeats. Euphytica 137:193–201CrossRefGoogle Scholar
  34. van Poppel G, Verhoeven DTH, Verhagen H, Goldbohm RA (1999) Brassica vegetables and cancer prevention. Epidemiology and mechanisms. Advances in nutrition and cancer, 2nd edn. Adv Exp Med Biol 472:159–168PubMedGoogle Scholar
  35. Wang Z, Weber JL, Zhong G, Tanksley SD (1994) Survey of plant short tandem DNA repeats. Theor Appl Genet 88:1–6Google Scholar
  36. Williams PH, Hill CB (1986) Rapid-cycling populations of Brassica. Science 232:1385–1389PubMedCrossRefGoogle Scholar
  37. Zhou WJ, Zhang GQ, Tuvesson S, Dayteg C, Gertsson B (2006) Genetic survey of Chinese and Swedish oilseed rape (Brassica napus L.) by simple sequence repeats (SSRs). Genet Resour Crop Evol 53:443–447CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2007

Authors and Affiliations

  • S. Louarn
    • 1
  • A. M. Torp
    • 1
  • I. B. Holme
    • 1
    • 2
  • S. B. Andersen
    • 1
  • B. D. Jensen
    • 1
    Email author
  1. 1.Department of Agricultural Sciences, Laboratory of Plant and Soil ScienceThe Royal Veterinary and Agricultural UniversityFrederiksberg CDenmark
  2. 2.Department of Genetics and BiotechnologyDanish Institute of Agricultural Sciences, Research Centre FlakkebjergSlagelseDenmark

Personalised recommendations