Advertisement

Genetic Resources and Crop Evolution

, Volume 54, Issue 7, pp 1499–1506 | Cite as

Assessing genetic diversity of Polish wheat (Triticum aestivum) varieties using microsatellite markers

  • Łukasz StępieńEmail author
  • Volker Mohler
  • Jan Bocianowski
  • Grzegorz Koczyk
Research Paper

Abstract

Fifty-three wheat cultivars have been genotyped using 24 SSR (simple sequence repeat) markers in order to evaluate genetic similarities among Polish wheats, i.e. 53 spring and winter cultivars; ‘Chinese Spring’ was taken as reference. ll but one SSR marker allowed to identify DNA polymorphisms, giving in total 166 alleles (including nulls), from 3 to 13 alleles per marker with mean of 7.22. Based on marker data, genetic similarities were calculated and a dendrogram was created. ‘Spring’ cultivars were less diverse than winter ones, showing the biggest similarity to ‘Chinese Spring’. Four sister cultivars (Nutka, Tonacja, Zyta and Sukces), formed a cluster of very similar materials, of which Zyta and Sukces had the highest similarity indices. Parental lines Jubilatka and SMH 2182 were more distant from each other (genetic similarity of 0.227). It was possible to differentiate all the wheats using only four SSR markers: Xgwm186, Xgwm389, Xgwm459 and Xgwm577.

Keywords

Genetic diversity Microsatellites Pedigree Triticum aestivum 

Notes

Acknowledgements

Authors would like to thank Dr. Marion Röder for the sequences of unpublished microsatellites. This research was supported by PBZ KBN 029/P06/2000/09 grant. Łukasz Stępień received a Foundation for Polish Science scholarship for the year 2005.

References

  1. Börner A, Röder MS, Unger O, Meinel A (2000) The detection and molecular mapping of a major gene for non-specific adult-plant disease resistance against stripe rust (Puccinia striiformis) in wheat. Theor Appl Genet 100:1095–1099CrossRefGoogle Scholar
  2. Burkhamer RL, Lanning SP, Martens RJ, Martin JM, Talbert LE (1998) Predicting progeny variance from parental divergence in hard red spring wheat. Crop Sci 38:243–248CrossRefGoogle Scholar
  3. Chen HB, Martin JM, Lavin M, Talbert LE (1994) Genetic diversity in hard red spring wheat based on sequence-tagged-site PCR markers. Crop Sci 34:1628–1632CrossRefGoogle Scholar
  4. Devos KM, Bryan GJ, Collins AJ, Gale MD (1995) Application of two microsatellite sequences in wheat storage proteins as molecular markers. Theor Appl Genet 90:247–252CrossRefPubMedGoogle Scholar
  5. Donini P, Stephenson P, Bryan GJ, Koebner RMD (1998) The potential of microsatellites for high troughput genetic diversity assessment in wheat and barley. Genet Resour Crop Evol 45:415–421CrossRefGoogle Scholar
  6. Fahima T, Röder MS, Wendehake K, Kirzhner VM, Nevo E (2002) Microsatellite polymorphism in natural populations of wild emmer wheat, Triticum dicoccoides, in Israel. Theor Appl Genet 104:17–29CrossRefPubMedGoogle Scholar
  7. Feldman M (2001) Origin of cultivated wheat. In: Bonjean AP, Angus WJ (eds) The World wheat book. A history of wheat breeding. Intercept, Paris, pp 3–56Google Scholar
  8. Ford R, Le Roux K, Itman C, Brouwer JB, Taylor PWJ (2002) Diversity analysis and genotyping in Pisum with sequence tagged microsatellite site (STMS) primers. Euphytica 124:397–405CrossRefGoogle Scholar
  9. Hammer K, Filatenko AA, Korzun V (2000) Microsatellite markers: a new tool for distinguishing diploid wheat species. Genet Resour Crop Evol 47:497–505CrossRefGoogle Scholar
  10. Harding RM, Boyce AJ, Clegg JB (1992) The evolution of tandemly repetitive DNA: recombination rules. Genetics 132:847–859PubMedPubMedCentralGoogle Scholar
  11. Huang XQ, Börner A, Röder MS, Ganal MW (2002) Assessing genetic diversity of wheat (Triticum aestivum L.) germplasm using microsatellite markers. Theor Appl Genet 105:699–707CrossRefPubMedGoogle Scholar
  12. Huang XQ, Zeller FJ, Hsam SLK, Wenzel G, Mohler V (2000) Chromosomal location of AFLP markers in common wheat (Triticum aestivum L.) utilizing nulli-tetrasomic stocks. Genome 43:298–305CrossRefPubMedGoogle Scholar
  13. Irzykowska L, Żółtańska E, Bocianowski J (2005) Use of molecular and conventional techniques to identify and analyze genetic variability of Rhizoctonia spp. isolates. Acta Agrobot 59(2):19–32Google Scholar
  14. Joshi CP, Nguyen HT (1993) RAPD (random amplified polymorphic DNA) analysis based intervarietal genetic relationships among hexaploid wheats. Plant Sci 93:95–103CrossRefGoogle Scholar
  15. Kim HS, Ward RW (2000) Patterns of RFLP-based genetic diversity in germplasm pools of common wheat with different geographical or breeding program origins. Euphytica 115:197–208CrossRefGoogle Scholar
  16. Kuczyńska A, Milczarski P, Surma M, Masojć P, Adamski T (2001) Genetic diversity among cultivars of spring barley revealed by random amplified polymorphic DNA (RAPD). J Appl Genet 42(1):43–48PubMedGoogle Scholar
  17. Nei M, Li WH (1979) Mathematical model for studying genetic variation in terms of restriction endonucleases. Proc Natl Acad Sci USA 76(10):5269–5273CrossRefPubMedPubMedCentralGoogle Scholar
  18. Parker GD, Chalmers KJ, Rathjen AJ, Langride P (1998) Mapping loci associated with flour colour in wheat (Triticum aestivum L.). Theor Appl Genet 97:238–245CrossRefGoogle Scholar
  19. Peng JH, Fahima T, Röder MS, Li YC, Dahan A, Grama A, Ronin YI, Korol AB, Nevo E (1999) Microsatellite tagging of the stripe-rust resistance gene YrH52 derived from wild emmer wheat, Triticum dicoccoides, and suggestive negative crossover interference on chromosome 1B. Theor Appl Genet 98:862–872CrossRefGoogle Scholar
  20. Pestsova E, Korzun V, Goncharov NP, Hammer K, Ganal MW, Röder MS (2000) Microsatellite analysis of Aegilops tauschii germplasm. Theor Appl Genet 101:100–106CrossRefGoogle Scholar
  21. Plaschke J, Ganal MW, Röder MS (1995) Detection of genetic diversity in closely related bread wheat using microsatellite markers. Theor Appl Genet 91:1001–1007PubMedGoogle Scholar
  22. Prasad M, Varsney RK, Roy JK, Balyan HS, Gupta PK (2000) The use of microsatellites for detecting DNA polymorphism, genotype identification and genetic diversity in wheat. Theor Appl Genet 100:584–592Google Scholar
  23. Rongwen J, Akkaya MS, Bhagwat AA, Lavi U, Cregan PB (1995) The use of microsatellite DNA markers for soybean genotype identification. Theor Appl Genet 90:43–48CrossRefPubMedGoogle Scholar
  24. Röder MS, Korzun V, Wendehake K, Plaschke J, Tixier MH, Leroy P, Ganal MW (1998) A microsatellite map of wheat. Genetics 149:2007–2023PubMedPubMedCentralGoogle Scholar
  25. Röder MS, Wendehake K, Korzun V, Bredemeijer G, Laborie D, Bertrand L, Isaac P, Rendell S, Jackson J, Cooke RJ, Vosmann B, Ganal MW (2002) Construction and analysis of a microsatellite-based database of European wheat cultivars. Theor Appl Genet 106:67–73CrossRefPubMedGoogle Scholar
  26. Stachel M, Lelly T, Grausgruber H, Vollmann J (2000) Application of microsatellites in wheat (Triticum aestivum L.) for studying genetic differentiation caused by selection for adaptation and use. Theor Appl Genet 100:242–248CrossRefGoogle Scholar
  27. Stępień Ł, Golka L, Chełkowski J (2003) Leaf rust resistance genes of wheat: identification in cultivars and resistance sources. J Appl Genet 44:139–149PubMedGoogle Scholar
  28. Tachida W, Iizuka M (1992) Persistence of repeated sequences that evolve by replication slippage. Genetics 131:471–478PubMedPubMedCentralGoogle Scholar
  29. Weber Z, Irzykowska L, Bocianowski J (2005) Analysis of mycelial growth rates and RAPD-PCR profiles in a population of Gaeumannomyces graminis var. tritici originating from wheat plants grown from fungicide-treated seed. J Phytopathol 153:318–324CrossRefGoogle Scholar
  30. Yashitola J, Thirumurugan T, Sundaram RM, Naseerullah MK, Ramesha MS, Sarma NP, Sonti RV (2002) Assessment of purity of rice hybrids using microsatellite and STS markers. Crop Sci 42:1369–1373CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2007

Authors and Affiliations

  • Łukasz Stępień
    • 1
    Email author
  • Volker Mohler
    • 2
  • Jan Bocianowski
    • 3
  • Grzegorz Koczyk
    • 1
  1. 1.Institute of Plant Genetics, Polish Academy of SciencesPoznańPoland
  2. 2.Chair of Agronomy and Plant Breeding, Centre for Food and Life Sciences WeihenstephanTechnical University MunichFreisingGermany
  3. 3.Department of Mathematical and Statistical MethodsAgricultural UniversityPoznańPoland

Personalised recommendations