Genetic Resources and Crop Evolution

, Volume 54, Issue 7, pp 1437–1446 | Cite as

AFLP fingerprinting of sesame (Sesamum indicum L.) cultivars: identification, genetic relationship and comparison of AFLP informativeness parameters

  • Hernán LaurentinEmail author
  • Petr Karlovsky
Research Paper


Amplified fragments length polymorphism (AFLP) was used to distinguish 20 cultivars of sesame (Sesamum indicum L.) and to elucidate the genetic relationship among these genotypes. The data were also used to estimate the usefulness of parameters currently used to assess the informativeness of molecular markers. A total of 339 markers were obtained using 8 primer combinations. Of the bands, 91% were polymorphic. Five primer combinations were able to distinguish all 20 cultivars used. None of the remaining three primer combinations could distinguish all accessions if used alone, but using all three combinations reduced the probability of a random match to 5 × 10−5. Polymorphic information content (PIC), resolving power (Rp) and marker index (MI) of each primer combination failed to correlate significantly with the number of genotypes resolved. Jaccard’s similarity coefficients ranged from 0.31 to 0.78. Fifteen cultivars were grouped by four UPGMA-clusters supported by bootstrapping values larger than 0.70. The grouping pattern was similar to the grouping generated by principal coordinate analysis. The results demonstrated that AFLP-based fingerprints can be used to identify unequivocally sesame genotypes, which is needed for cultivar identification and for the assessment of the genetic variability of breeding stocks. We recommend to use the number of cultivars identified by a primer combination instead of PIC, Rp and MI; and to calculate the maximal, instead of average probability of identical match by chance in the assessment of the informativeness of a marker for cultivar identification.


AFLP DNA fingerprinting Genotype identification Genotyping Sesamum indicum 



This work was supported by the Programme Alban, European Union Programme of High Level Scholarships for Latin America, Identification Number E03D13301VE, International PhD program for Agricultural Sciences in Göttingen University (IPAG) and Universidad Centroccidental Lisandro Alvarado.


  1. Archak S, Gaikwad B, Gautam D, Rao E, Swamy K, Karihaloo J (2003) DNA fingerprinting of Indian cashew (Anacardium occidentale L.) varieties using RAPD and ISSR techniques. Euphytica 230:397–404CrossRefGoogle Scholar
  2. Ashri A (1998) Sesame breeding. Plant Breed Rev 16:179–228Google Scholar
  3. Bohn M, Utz H, Melchinger A (1999) Genetic similarities among winter wheat cultivars determined on the basis of RFLPs, AFLPs and SSRs and their use for predicting progeny variance. Crop Sci 39:228–237CrossRefGoogle Scholar
  4. Buhariwalla HK, Jayashree B, Eshwar K, Crouch JH (2005) Development of ESTs from chickpea roots and their use in diversity analysis of the Cicer genus. BMC Plant Biol 5:16CrossRefPubMedPubMedCentralGoogle Scholar
  5. Dangi RS, Lagu MD, Choudhary LB, Ranjekar PK, Gupta VS (2004) Assessment of genetic diversity in Trigonella foenum-graecum and Trigonella caerulea using ISSR and RAPD markers. BMC Plant Biol 4:13CrossRefPubMedPubMedCentralGoogle Scholar
  6. De Riek J, Calsyn E, Everaert I, Van Bockstaele E, De Loose M (2001) AFLP based alternatives for the assessment of distinctness, uniformity and stability of sugar beet varieties. Theor Appl Genet 103:1254–1265CrossRefGoogle Scholar
  7. FAO (2005) FAOstat Databases.
  8. Fernandez M, Figueiras A, Benito C (2002) The use of ISSR and RAPD markers for detecting DNA polymorphism, genotype identification and genetic diversity among barley cultivars with known origin. Theor Appl Genet 104:845–851CrossRefPubMedGoogle Scholar
  9. Hong Y, Chuah A (2003) A format for databasing and comparison of AFLP fingerprint profiles. BMC Bioinformatics 4:7CrossRefPubMedPubMedCentralGoogle Scholar
  10. Karp A, Kresovich S, Bhat K, Ayad W, Hodgkin T (1997) Molecular tools in plant genetic resources conservation: a guide to the technology. IPGRI Technical Bulletin No. 2. International Plant Genetic Resources Institute, Rome, ItalyGoogle Scholar
  11. Langham D, Rodriguez M (1946) Dos nuevas variedades de ajonjolí Venezuela 51 y Venezuela 52. Circular No. 15. Departamento de Genetica. Dirección de Agricultura. Maracay. VenezuelaGoogle Scholar
  12. Laurentin H, Layrisse A, Quijada P (2000) Evaluación de dos ciclos de selección recurrente para altos rendimientos de semilla en una población de ajonjolí. Agronomía Tropical (Maracay) 50:521–535Google Scholar
  13. Laurentin H, Pereira C, Sanabria M (2003) Phytochemical characterization of six sesame (Sesamum indicum L.) genotypes and their relationships with resistance against whitefly (Bemisia tabaci Gennadius). Agronomy J 95(6):1577–1582CrossRefGoogle Scholar
  14. Laurentin H, Montilla D, Garcia V (2004) Relación entre el rendimiento de ocho genotipos de ajonjolí (Sesamum indicum L.) y sus componentes. Comparación de metodologías. Bioagro 16:153–162Google Scholar
  15. Laurentin H, Karlovsky P (2006) Genetic relationship and diversity in a sesame (Sesamum indicum L.) germplasm collection using amplified fragment length polymorphism. BMC Genet 7:10CrossRefPubMedPubMedCentralGoogle Scholar
  16. Mazzani B (1952) Una nueva variedad de ajonjolí producica en el Instituto Nacional de Agricultura. Agronomía Tropical (Maracay) 1:269–277Google Scholar
  17. Mazzani B (1953) Inamar: nueva variedad de ajonjolí producidad en el Instituto Nacional de Agricultura. Agronomía Tropical (Maracay) 3:211–213Google Scholar
  18. Mazzani B, Nava C, Martinez A, Layrisse A (1973) Maporal, una nueva variedad de ajonjoli para los Llanos Occidentales. Agronomia Tropical 23:501–508Google Scholar
  19. Milbourne D, Meyer R, Bradshaw J, Baird E, Bonar N, Provan J, Powell W, Waught R (1997) Comparison of PCR-based marker systems for the analysis of genetic relationships in cultivated potato. Mol Breed 3:127–136CrossRefGoogle Scholar
  20. de Moretzsohn MC, Hopkins MS, Mitchell SE, Kresovich S, Valls JF, Ferreira ME (2004) Genetic diversity of peanut (Arachis hypogaea L.) and its wild relatives based on the analysis of hypervariable regions of the genome. BMC Plant Biol 4:11CrossRefPubMedCentralGoogle Scholar
  21. Montilla D, Cedeño T (1991) Fonucla: una nueva variedad de ajonjolí (Sesamum indicum L.). Bioagro 3:52–54Google Scholar
  22. Montilla D, Teran H (1996) UCLA1, una nueva variedad de ajonjolí (Sesamum indicum L.). Bioagro 8:26–29Google Scholar
  23. Muminovic J, Melchinger A, Lübberstedt T (2004) Genetic diversity in cornsalad (Valerianella locusta) and related species as determined by AFLP markers. Plant Breed 123:460–466CrossRefGoogle Scholar
  24. Ovesná J, Poláková K, Leisová L (2002) DNA analyses and their applications in plant breeding. Czech J Genet Plant Breed 38:29–40Google Scholar
  25. Powell W, Margenta M, Andre C, Hanfrey M, Vogel J, Tingey S, Rafalsky A (1996) The utility of RFLP, RAPD, AFLP and SSR (microsatellite) markers for germplasm analysis. Mol Breed 2:225–238CrossRefGoogle Scholar
  26. Prevost A, Wilkinson M (1999) A new system of comparing PCR primers applied to ISSR fingerprinting of potato cultivars. Theor Appl Genet 98:107–112CrossRefGoogle Scholar
  27. Rajora O, Rahman M (2003) Microsatellite DNA and RAPD fingerprinting, identification and genetic relationships of hybrid poplar (Populus × canadensis) cultivars. Theor Appl Genet 106:470–477CrossRefPubMedGoogle Scholar
  28. Ramakrishna W, Lagu M, Gupta V, Ranjekar P (1994) DNA fingerprinting in rice using oligonucleotide probes specific for simple repetitive DNA sequences. Theor Appl Genet 88:402–406Google Scholar
  29. Rao N (2004) Plant genetic resources: advancing conservation and use through biotechnology. Afr J Biotechnol 3:136–145Google Scholar
  30. Reineke A, Karlovsky P (2000) Simplified AFLP protocol: replacement of primer labeling by the incoporation of α-labeled nucleotides during PCR. BioTechniques 28:622–623PubMedGoogle Scholar
  31. Roldán-Ruiz I, Dendauw J, VanBockstaele E, Depicker A, De Loose M (2000) AFLP markers reveal high polymorphic rates in ryegrasses (Lolium spp.). Mol Breed 6:125–134CrossRefGoogle Scholar
  32. Salazar B, Laurentin H, Dávila M, Castillo M (2006) Reliability of the RAPD technique for germplasm analysis of sesame (Sesamum indicum L.) from Venezuela. Interciencia 31:456–460Google Scholar
  33. Savelkoul P, Aarts H, DeHaas J, Dijkshoorn L, Duim B, Otsen M, Rademaker J, Schouls L, Lenstra J (1999) Amplified-fragment length polymorphism analysis: the state of an art. J Clin Microbiol 37:3083–3091PubMedPubMedCentralGoogle Scholar
  34. Stodart B, Mackay M, Raman H (2005) AFLP and SSR analysis of genetic diversity among landraces of bread wheat (Triticum aestivum L. em. Thell.) from different geographic regions. Aust J Agric Res 56:691–697CrossRefGoogle Scholar
  35. Tams S, Melchinger A, Bauer E (2005) Genetic similarity among European winter triticale elite germplasm assessed with AFLP and comparisons with SSR and pedigree data. Plant Breed 124:154–160CrossRefGoogle Scholar
  36. Voss P, Hogers R, Bleeter M, Reijans M, van de Lee T, Hornes M, Frijters A, Pot J, Peleman J, Kuiper M, Zabeau M (1995) AFLP: a new technique for DNA fingerprinting. Nucleic Acids Res 23:4407–4414CrossRefGoogle Scholar
  37. Wetton J, Carter R, Parkin D, Walters D (1987) Demographic study of a wild house sparrow population by DNA fingerprinting. Nature 327:147–149CrossRefPubMedGoogle Scholar
  38. Zhang LH, Ozias-Akins P, Kochert G, Kresovich S, Dean R, Hanna W (1999) Differentiation of bermudagrass (Cynodon spp.) genotypes by AFLP analysis. Theor Appl Genet 98:895–902CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2007

Authors and Affiliations

  1. 1.Department of Biologic Sciences, Agronomy FacultyUniversidad Centroccidental Lisandro AlvaradoCabudare, estado LaraVenezuela
  2. 2.Department of Crop SciencesGeorg-August UniversityGoettingenGermany

Personalised recommendations