Advertisement

Genetic Resources and Crop Evolution

, Volume 54, Issue 7, pp 1419–1427 | Cite as

Molecular phylogeny of genus Guizotia (Asteraceae) using DNA sequences derived from ITS

  • Endashaw Bekele
  • Mulatu Geleta
  • Kifle Dagne
  • Abigail L. Jones
  • Ian Barnes
  • Neil Bradman
  • Mark G. Thomas
Research Paper

Abstract

Complete sequences for the internal transcribed spacers of the 18s–26s nuclear ribosomal DNA were generated to establish phylogenetic relationships among five species of the genus Guizotia. Parsimony analysis and pairwise distance data produced a single tree with four clearly distinguished clades that accord with previously reported chromosomal data. The clades produced here have been discussed with reference to existing taxonomic treatments. It appears that Guizotia scabra ssp. scabra, G. scabra ssp. schimperi and Guizotia villosa have contributed to the origin of Guizotia abyssinica, the cultivated species of the genus. The present composition of the species of genus Guizotia and the subtribe the genus presently placed in are suggested to be redefined.

Keywords

ITS Phylogeny Guizotia 

Notes

Acknowledgements

The first author is very grateful for all the assistances provided to him by Centers for Genetic Anthropology of University College of London that kindly hosted the sequence study made. Part of the living cost for the present study was made by a grant from Sida/SAREC.

References

  1. Baagøe J (1974) The genus Guizotia (Compositae). A taxonomic revision. Bot Tidsskr 69:1–39Google Scholar
  2. Baldwin B (1992) A phylogenetic utility of the internal transcribed spacers of nuclear ribosomal DNA in plants: an example from the Compositae. Mol Phylogenet Evol 1:3–16CrossRefPubMedGoogle Scholar
  3. Baldwin B, Snderson M, Porter J, Wojciechowski M, Campbell C, Donoghue M (1995) The ITS region of nuclear ribosomal DNA: a valuable source of evidence on angiosperm phylogeny. Ann Mol Bot Gard 82:247–277CrossRefGoogle Scholar
  4. Bekele E (1998) Historical and biological accounts of Ethiopia’s unique position in the domestication and utilization of plant genetic resources: Ethiopia’s gift to the world. Ethiopia’s in broader perspective, vol. III. Nakanish Printing Co. Ltd, Kyoto, Japan, pp 775–789Google Scholar
  5. Bekele E, Lester RN (1981) Biochemical assessment of the relationship of Eragrostis tef (Zucc.) Trotter with some wild Eragrostis species. Ann Bot 48:717–725CrossRefGoogle Scholar
  6. Cerbah M, Souza-Chies T, Jubier MF, Lejeune B, Siljak-Yakovlev S (1998) Molecular phylogeny of the Hypochaeris using internal transcribed spacers of nuclear rDNA: inference for Chromosoma Evolution. Mol Biol Evol 15:345–354CrossRefPubMedGoogle Scholar
  7. Dagne K (1995) Karyotypes, C-banding and nuclear numbers in Guizotia (Compositae). Plant Syst Evol 195:121–135CrossRefGoogle Scholar
  8. Dagne K (2001) Cytogenetics of new Guizotia Cass. (Compositae) interspecific hybrids pertaining to genomic and phylogenetic affinities. Plant Syst Evol 230:1–11CrossRefGoogle Scholar
  9. Dagne K, Heneen WK (1992) The karyotype and nucleoli of Guizotia abyssinica (Compositae). Hereditas 117:73–83CrossRefGoogle Scholar
  10. Hiremath SC, Murthy HN (1988) Domestication of Niger (Guizotia abyssinica). Euphytica 37:225–228Google Scholar
  11. Hiremath SC, Murthy HN (1992) Cytogenetical studies in Guizotia (Asteraceae). Caryologia 45:69–82CrossRefGoogle Scholar
  12. Hiremath SC, Murthy HN, Salimath SS (1992) Quantitative nuclear DNA differences associated with genome evolution in Guizotia (Compositae). Genetica 85:241–247CrossRefGoogle Scholar
  13. Humbles JE (1972) Observations of genus Seigesbeckia L. Cienc Naturaleza 13:2–19Google Scholar
  14. Karis PO (1993) Heliantheae sensu lato (Asteraceae) Clades and classification. Plant Syst Evol 188:139–195CrossRefGoogle Scholar
  15. Kimura M (1980) A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120CrossRefPubMedGoogle Scholar
  16. Purseglove JW (1976) The origin and migration of crops in Tropical Africa. In: Harlan J, De Wet JMJ, Stemler ABI (eds) Origin of African plant domestication. Mountain Publishers, The Hague, Paris, pp 291–309Google Scholar
  17. Robinson H (1981) A revision of the tribal and subtribal limits of the Heliantheae (Asteraceae). Smithson Contrib Bot 51:1–102Google Scholar
  18. Schulz DL (1990) Zur Kenntnis der Gattung Sigesbeckia L. in Africa. Gleditschia 46:613–628Google Scholar
  19. Soltis DE, Soltis PS, Doyle JJ (1998) Molecular systematics of plants II: DNA sequencing. Kluwer, DordrechtCrossRefGoogle Scholar
  20. Stuessy TF (1977) Heliantheae—systematic review. In: Heywood VH, Harborne JB, Turner BL (eds) The biology and chemistry of the Compositae, vol. 1. Academic, London, pp 1106–1118Google Scholar
  21. Weiss EA (1971) Castor, sesame and safflower. Leonard Hill, LondonGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  • Endashaw Bekele
    • 1
  • Mulatu Geleta
    • 1
    • 2
  • Kifle Dagne
    • 1
  • Abigail L. Jones
    • 3
  • Ian Barnes
    • 3
  • Neil Bradman
    • 3
  • Mark G. Thomas
    • 3
  1. 1.Department of BiologyAddis Ababa UniversityAddis AbabaEthiopia
  2. 2.Department of Crop ScienceSwedish University of Agricultural Sciences AlnarpSweden
  3. 3.The Center for Genetic Anthropology (TCGA)University College of LondonLondonUK

Personalised recommendations