Genetic Resources and Crop Evolution

, Volume 54, Issue 5, pp 1133–1144

Dispersal of durum wheat [Triticum turgidum L. ssp. turgidum convar. durum (Desf.) MacKey] landraces across the Mediterranean basin assessed by AFLPs and microsatellites

  • Marc Moragues
  • Marian Moralejo
  • Mark E. Sorrells
  • Conxita Royo
Original Paper


A comprehensive characterization of crop germplasm is critical to the optimal improvement of the quality and productivity of crops. Genetic relationships and variability were evaluated among 63 durum wheat landraces from the Mediterranean basin using amplified fragment length polymorphisms (AFLPs) and microsatellites markers. The genetic diversity indices found were comparable to those of other crop species, with average polymorphism information content (PIC) values of 0.24 and 0.70 for AFLP and microsatellites, respectively. The mean number of alleles observed for the microsatellites loci was 9.15. Non-metric multi-dimensional scaling clustered the accessions according to their geographical origin with the landraces from the South shore of the Mediterranean Sea closely related. The results support two dispersal patterns of durum wheat in the Mediterranean basin, one through its north side and a second one through its south side.


AFLP Genetic diversity Genetic relationships Landraces Triticum turgidum L. ssp. turgidum convar. durum (Desf.) MacKey 



South west






Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ahmat M (2002) Assessment of genomic diversity among wheat genotypes as determined by simple sequence repeats. Genome 45:646–651CrossRefGoogle Scholar
  2. Arié R (1980) España musulmana: Evolución política. In: Tuñón De Lara M (ed) Historia de España, Labor, Barcelona, pp. 13–45Google Scholar
  3. Autrique E, Nachit MM, Monneveux P, Tanksley SD, Sorrells ME (1996) Genetic diversity in durum wheat based on RFLPs, morphophysiological traits, and coefficient of parentage. Crop Sci 36:735–742CrossRefGoogle Scholar
  4. Barrett BA, Kidwell KK (1998) AFLP-based genetic diversity assessment among wheat cultivars from the Pacific Northwest. Crop Sci 38:1261–1271CrossRefGoogle Scholar
  5. Bertin P, Gregorie D, Massart S, De Froidmont D (2001) Genetic diversity among European cultivated spelt revealed by microsatellites. Theor Appl Genet 102:148–156CrossRefGoogle Scholar
  6. Bohn M, Utz HF, Melchinger AE (1999) Genetic similarities among winter wheat cultivars determined on the basis of RFLPs, AFLPs, and SSRs and their use for predicting progeny variance. Crop Sci 39:228–237CrossRefGoogle Scholar
  7. Botstein D, White RL, Skolnick M, Davis RW (1980) Construction of a genetic linkage map in man using restriction fragment length polymorphisms. Am J Hum Gen 32:314–331Google Scholar
  8. Chikmawati T, Skovmand B, Gustafson J (2005) Phylogenetic relationships among Secale species revealed by amplified fragment length polymorphisms. Genome 48(5):792–801Google Scholar
  9. Devos K, Bryan G, Collins A, Stephenson P, Gale M (1995) Application of two microsatellites sequences in wheat storage proteins as molecular markers. Theor Appl Gen 90:247–252CrossRefGoogle Scholar
  10. Dograr N, Akin-Yalin S, Akkaya MS (2000) Discriminating durum wheat cultivars using highly polymorphic simple sequence repeat DNA markers. Plant Breed 119:360–362CrossRefGoogle Scholar
  11. Donini P, Law JR, Koebner RMD, Reeves JC, Cooke RJ (2000) Temporal trends in the diversity of UK wheat. Theor Appl Genet 100:912–917CrossRefGoogle Scholar
  12. Donini P, Stephenson P, Bryan GJ, Koebner RMD (1998) The potential of microsatellites for high throughput genetic diversity assessment in wheat and barley. Genet Res Crop Evol 45:415–421CrossRefGoogle Scholar
  13. Doyle JJ, Doyle JL (1990) Isolation of plant DNA from fresh tissues. Focus 12:13–15Google Scholar
  14. Fahima T, Röder MS, Wendehake K, Kirzhner VM, Nevo E (2002) Microsatellite polymorphism in natural populations of wild emmer wheat, Triticum dicoccoides, in Israel. Theor Appl Genet 104:17–29PubMedCrossRefGoogle Scholar
  15. Feldman M (2001) Origin of cultivated wheat. In: Angus WJ (ed) The world wheat book. A history of wheat breeding, Lavoisier Publishing, Paris, pp 3–57Google Scholar
  16. Incrili AL, Akkaya MS (2001) Assessment of genetic relationships in durum wheat cultivar using AFLP markers. Genet Resour Crop Evol 48:133–138Google Scholar
  17. Jaccard P (1908) Nouvelles reserches sur la distribution florale. Bull Soc Vaud Sci Nat 44:223–270Google Scholar
  18. Kruskal JB (1964) Multidimensional scaling by optimizing goodness of fit to a non-metric hypothesis. Psychometrika 29:1–27CrossRefGoogle Scholar
  19. Lessa EP (1990) Multidimensional analysis of geographic genetic structure. Syst Zool 39:242–252CrossRefGoogle Scholar
  20. Li Y, Fahima T, Korol AB, Peng J, Röder MS, Kizhner V, Beiles A, Nevo E (2000) Microsatellites diversity correlated with ecological and genetics factors in three microsites of wild emmer wheat in north Israel. Mol Biol Evol 17:851–862PubMedGoogle Scholar
  21. Lima MLA, Garcia AAF, Oliveira KM, Matsuoka S, Arizono HJ, De Souza CL, De Souza AP (2002) Analysis of genetic similarity detected by AFLP and coefficient of parentage among genotypes of sugar cane (Saccharum) spp. Theor Appl Genet 104:30–38PubMedCrossRefGoogle Scholar
  22. Lynch M (1990) The similarity index and DNA fingerprinting. Mol Biol Evol 7:478–484PubMedGoogle Scholar
  23. Maccaferri M, Sanguineti MC, Donini P, Tuberosa R (2003) Microsatellite analysis reveals a progressive widening of the genetic basis in the elite durum wheat germplasm. Theor Appl Genet 107:783–797PubMedCrossRefGoogle Scholar
  24. MacKey J (2005). Wheat, its concept, evolution and taxonomy. In: Royo C, Nachit M, Di Fonzo N, Araus JL, Pfeiffer WH, Slafer GA (eds), Durum wheat breeding: current approaches and future strategies, Ed. Vol. I Howorth Press, New York, pp 3–62Google Scholar
  25. Maier FG (1972) Las transformaciones del mundo mediterráneo. Siglos III/VIII. Siglo XXI de España Editores, MéxicoGoogle Scholar
  26. Manifesto MM, Schlatter AR, Hopp HE, Suárez EY, Dubcovsky J (2001) Quantitative evaluation of genetic diversity in wheat germplasm using molecular markers. Crop Sci 41:682–690CrossRefGoogle Scholar
  27. Mantel NA (1967) The detection of disease clustering and a generalized regression approach. Cancer Res 27:209–220PubMedGoogle Scholar
  28. Mohammadi SA, Prasanna BM (2003) Analysis of genetic diversity in crop plants—Salient statistical tools and considerations. Crop Sci 43:1235–1248CrossRefGoogle Scholar
  29. Moragues M, Garcia Del Moral LF, Moralejo M Royo C (2006a). Yield formation strategies of durum wheat landraces with distinct pattern of dispersal within the Mediterranean basin: II. Biomass production and allocation. Field Crops Res 95:182–193Google Scholar
  30. Moragues M, Garcia Del Moral LF, Moralejo M Royo C (2006b). Yield formation strategies of durum wheat landraces with distinct pattern of dispersal within the Mediterranean basin: I. Yield components. Field Crops Res 95:194–205Google Scholar
  31. Moragues M, Moralejo MA, Royo C (2002) Genetic and phenotypic variability among durum wheat landraces from the Mediterranean Basin. In: Mare C, Faccioli P, Stanca AM (eds) From biodiversity to genomics: breeding strategies for small grain cereals in the third Millenium. Abstracts of the EUCARPIA Cereal Section Meeting., Salsomaggiore (Italy), 21–25 November 2002, p 51Google Scholar
  32. Moragues M, Moralejo MA, Villegas D, Royo C (2003) Genetic and agronomic variability of durum wheat within the Mediterranean region. In: Maggioni L, Faberova I, Blanc AL, Lipman E (eds) Report on Working Group on Wheat, European Cooperative Programme for Crop Genetic Resources Networks (ECPGR) International Plant Genetic Resource Institute (IPGRI), Prague-Ruzyne, Czech Republic, pp 116–118Google Scholar
  33. Moragues M, Villegas D, Garcia Del Moral LF, Royo C (2005). The area of dispersal affects carbon isotope discrimination of Mediterranean durum wheat landraces. Interdrought-II. The 2nd International Conference on Integrated Approaches to Sustain and Improve Plant Production Under Drought Stress, Rome, Italy, September 24–28, p 4.27Google Scholar
  34. Morancho J (2000). Production et commercialisation du blé dur dans le monde. In: Araus JL (ed) Durum wheat improvement in the Mediterranean region: new challenges. Zaragoza, 12–14 April 2000, pp 29–34Google Scholar
  35. Reif JC, Melchinger AE, Frisch M (2005) Genetical and mathematical properties of similarity and dissimilarity coefficients applied in plant breeding and seed bank management. Crop Sci 45:1–7CrossRefGoogle Scholar
  36. Röder MS, Korzun V, Wendehake K, Plaschke J, Tixier M-HLN, Leroy P, Ganal MW (1998) A microsatellite map of wheat. Genetics 149:2007–2023PubMedGoogle Scholar
  37. Rogers JS (1972) Measures of genetic similarity and genetic distance. Studies Genet VII. 72:145–153Google Scholar
  38. Rohlf FJ (2003) NTSYS-pc numerical taxonomy and multivariate analysis system. Exeter Software, Setauket, NYGoogle Scholar
  39. Sayas Abengoechea JJ, García Moreno LA (1980) El periodo de las invasiones. In: Tuñón De Lara M (ed) Historia de España. Labor, Barcelona, pp 245–279Google Scholar
  40. Sneath PHA, Sokal RR (1973) Numerical taxonomy. Freeman, San FranciscoGoogle Scholar
  41. Soleimani VD, Baum BR, Johnson DA (2002) AFLP and pedigree-based genetic diversity estimates in modern cultivars of durum wheat [Triticum turgidum L. subsp. durum (Desf.) Husn.]. Theor Appl Genet 104:350–357PubMedCrossRefGoogle Scholar
  42. Stachel M, Lelley T, Grausgruber H, Vollman J (2000) Application of microsatellites en wheat (Triticum aestivum L.) for studing genetic diferentiation caused by selection for adaptation and use. Theor Appl Genet 100:242–248CrossRefGoogle Scholar
  43. Tuñón De Lara M, Tarradell M, Mangas J (1980) Primeras culturas e Hispania romana. In: Tuñón De Lara M (ed) Historia de España. Labor, Barcelona, pp 65–90Google Scholar
  44. Uptmoor R, Wenzel W, Friedt W, Donaldson G, Ayisi K, Ordon F (2003) Comparative analysis on the genetic relatedness of Sorghum bicolor accessions from Southern Africa by RAPDs, AFLPs and SSRs. Theor Appl Genet 106:1316–1325PubMedGoogle Scholar
  45. Wartenberg D, Ferson S, Rohlf JF (1987) Putting things in order: a critique of detrended correspondence analysis. Am Natur 129:434–448CrossRefGoogle Scholar
  46. Zeid M, Schön CC, Link W (2003) Genetic diversity in recent elite faba bean lines using AFLP markers. Theor Appl Genet 107:1304–1314PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2007

Authors and Affiliations

  • Marc Moragues
    • 1
    • 2
  • Marian Moralejo
    • 1
  • Mark E. Sorrells
    • 2
  • Conxita Royo
    • 1
  1. 1.Area de Conreus Extensius, Centre UdL-IRTALleidaSpain
  2. 2.Plant Breeding DepartmentCornell UniversityIthacaUSA

Personalised recommendations