Advertisement

Genetic Resources and Crop Evolution

, Volume 54, Issue 3, pp 585–592 | Cite as

Swordbean (Canavalia ensiformis (L.) DC.) Genetic Resources Regenerated for Potential Medical, Nutraceutical and Agricultural Traits

  • J. B. Morris
Article

Abstract

Swordbean, Canavalia ensiformis has been used in Asia and Japan as a vegetable while in the United States sword bean is used as a source of the lectin concanavalin A. The USDA, ARS, PGRCU maintains 27 swordbean accessions. Swordbean accessions were transplanted from approximately 45-day-old seedlings to the field in Griffin, GA around 01 June from 1998 to 2003 (except 2001). After 3–4 months, 21 accessions were characterized for morphological traits and evaluated for regeneration. High quality plants regenerated from all accessions produced 19 to more than 1100 total seeds. Swordbean can be successfully grown and regenerated in Griffin, GA. Swordbean has potential to be used in numerous other ways including nutraceuticals, phytopharmaceuticals, and other agricultural products. Flavonoids such as rutin identified in swordbean seeds may decrease precancerous lesions in the large intestine while the phytochemical, beta-aminopropionitrile inhibits breast adenocarcinoma growth. Canatoxin, the potential pesticide from swordbean seeds showed toxicity to the cotton pest, Dysdercus peruvianus.

Key words

Canavalia ensiformis Insecticidal Lectin Nematicidal Phytopharmaceutical Virus 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aratanechemuge Y., Hibasami H., Katsuzaki H., Imai K. and Komiya T. (2004). Induction of apoptosis by maackiain and trifolirhizin (maackiain glycoside) isolated from sanzukon (Sophora subprostrate Chen et T. Chen) in human promyelotic leukemia HL-60 cells. Oncol. Rep. 12: 1183–1188PubMedGoogle Scholar
  2. Araujo A.P. and Dealmeida D.L. (1993). Green manure associated with rock-phosphate on maize crop. Pesquisa Agropecuaria Brasileira 28: 245–251Google Scholar
  3. Bence A.K., Adams V.R. and Crooks P.A. (2003). Mol. Cell. Biochem. 244: 37–43PubMedCrossRefGoogle Scholar
  4. Berger B.J. (2000). Antimalarial activities of aminooxy compounds. Antimicrob. Agents Chemother. 44: 2540–2542PubMedCrossRefGoogle Scholar
  5. Brattain M., Jones C., Pittman J. and Pretlow T. (1975). The purification of carcinoembryonic antigen by glutaraldehyde cross linked concanavalin A. Biochem. Biophys. Res. Commun. 65: 63–67PubMedCrossRefGoogle Scholar
  6. Brunt A.A., Crabtree K., Dallwitz M.J., Gibbs A.J., Watson L. and Zurcher E.J. 1996. Plant Viruses Online: Descriptions and Lists from the VIDE Database. Version: 20th August 1996. URL http://biology.anu.edu.au/Groups/MES/vide/.Google Scholar
  7. Camuesco D., Comalada M., Rodriguez-Cabezas M.E., Nieto A., Lorente M.D., Concha A., Zarzuelo A. and Galvez J. (2004). The intestinal anti-inflammatory effect of quercitrin is associated with an inhibition in iNOS expression. Br. J. Pharmacol. 143: 908–918PubMedCrossRefGoogle Scholar
  8. Casini P. and Olivero L. (2001). Allelopathic effects of legume cover crops on cogon grass (Imperata brasiliensis Trin.). Allelopathy J. 8: 189–199Google Scholar
  9. Chvapil M. (2005). Inhibition of breast adenocarcinoma growth by intratumoral injection of lipophilic long-acting lathyrogens. Anticancer Drugs 16: 201–210PubMedCrossRefGoogle Scholar
  10. Clark A. and Denborough M. (1971). The interaction of concanavalin A with blood group substance glycoproteins from human secretions. Biochem. J. 121: 811–816Google Scholar
  11. Comalada M., Camuesco D., Sierra S., Ballester I., Xaus J., Galvez J. and Zarzuelo A. (2005). Eur. J. Immunol. 35: 584–592PubMedCrossRefGoogle Scholar
  12. Duke J.A. 1994. The Phytochemical Database. Data version July 1994. [Online] Available at http://www.ars-grin.gov/duke/.Google Scholar
  13. Fujihara S., Nakashima T. and Kurogochi Y. (1984). Effects of the spermine analogue canavalmine on proliferation of murine erythroleukemia cells in culture. Biochim. Biophys. Acta 805: 277–284PubMedCrossRefGoogle Scholar
  14. Fukai T., Marumo A., Kaitou K., Kanda T., Terada S. and Nomura T. (2002). Anti-Helicobacter pylori flavonoids from licorice extract. Life Sci. 71: 1449–1463PubMedCrossRefGoogle Scholar
  15. (1994). Plants and their constituents. In: Bisby, F.A. (eds) Phytochemical Dictionary of the Leguminosae, pp 1–748. Chapman and Hall, New YorkGoogle Scholar
  16. Kornfeld R. and Ferris C. (1975). Interaction of immunoglobulin glycopeptides with concanavalin A. J. Biol. Chem. 250: 2614–2619PubMedGoogle Scholar
  17. Lin Y.T., Dhiraj V., Labbe R.G. and Shetty K. (2005). Enhancement of antioxidant activity and inhibition of Helicobacter pylori by phenolic phytochemical-enriched alcoholic beverages. Process Biochem. 40: 2059–2065CrossRefGoogle Scholar
  18. Lu S.Y. 2004. Anti-tumor metallocomplexes of crude extracts from Canavalia ensiformis. Official Gazette of the United States Patent and Trademark Office Patents 1287 (2).Google Scholar
  19. Marley P.S. and Hillocks R.J. (1993). The role of phytoalexins in resistance to Fusarium wilt in pigeon pea (Cajanus cajan). Plant Pathol. 42: 212–218CrossRefGoogle Scholar
  20. Morris J.B. (1997). Special-purpose legume genetic resources conserved for agricultural, industrial and pharmaceutical use. Econ. Bot. 51: 251–263Google Scholar
  21. Morris J.B. and Walker J.T. (2002). Non-traditional legumes as potential soil amendments for nematode control. J. Nematol. 34: 358–361PubMedGoogle Scholar
  22. Mundodi S.R., Watson B.S., Lopez-Meyer M. and Paiva N.L. (2001). Functional expression and subcellular localization of the Nectria haematococca Mak 1 phytoalexin detoxification enzyme in transgen tobacco. Plant Mol. Biol. 46: 421–432PubMedCrossRefGoogle Scholar
  23. Nair H.K., Rao K.V.K., Aalinkeel R., Mahajan S., Chawda R. and Schwartz S.A. (2004). Inhibition of prostate cancer cell colony formation by the flavonoid quercetin correlates with modulation of specific regulatory genes. Clin. Diagn. Lab. Immunol. 11: 63–69PubMedCrossRefGoogle Scholar
  24. NAS/NRC 1979. Tropical Legumes: Resources for the Future. Report by an ad hoc advisory panel of the Advisory Committee on Technology Innovation, Board on Science and Technology for International DevelopmentCommission on International Relations, National Academy of Sciences and the National Research Council, Washington, D.C.Google Scholar
  25. National Plant Germplasm System. 2005. Germplasm Resources Information Network (GRIN). Database Management Unit (DBMU), National Plant Germplasm System. U.S. Dep. Agric, Beltsville, MD.Google Scholar
  26. Nguyen A.T., Malonne H., Duez P., Vanhaelen-Fastre R., Vanhaelen M. and Fontaine J. (2004). Fitoterapia 75: 500–504PubMedCrossRefGoogle Scholar
  27. Ong C.S., Tran E., Nguyen T.T.T., Ong C.K., Lee S.K., Lee J.J., Ng C.P., Leong C. and Huynh H. (2004). Quercetin-induced growth inhibition and cell death in nasopharyngeal carcinoma cells are associated with increase in Bad and hypophosphorylated retinoblastoma expressions. Oncol. Rep. 11: 727–733PubMedGoogle Scholar
  28. Piperno D.R. and Pearsall D.M. (1998). The Origins of Agriculture in the Lowland Neotropics. Academic Press, San DiegoGoogle Scholar
  29. Purseglove J.W. (1981). Leguminosae. In: Purseglove, J.W. (eds) Tropical Crops, Dicotyledons, pp. Longman Group LTD, Essex, UKGoogle Scholar
  30. Saleem M., Afaq F., Adhami V.M. and Mukhtar H. (2004). Lupeol modulates NF-Kappa B and P13K/Akt pathways and inhibits cancer in CD-1 mice. Oncogene 23: 5203–5214PubMedCrossRefGoogle Scholar
  31. Staniscuaski F., Ferreira-Dasilva C.T., Mulinari F., Pires-Alves M. and Carlini C.R. (2005). Insecticidal effects of canatoxin on the cotton stainer bug Dysdercus peruvianus (Hemiptera: Pyrrhocoridae). Toxicon 45: 753–760PubMedCrossRefGoogle Scholar
  32. Stevenson P.C. and Haware M.P. (1999). Maackiain in Cicer bijugum Rech. f. associated with resistance to Botrytis grey mould. Biochem. Syst. Ecol. 27: 761–767CrossRefGoogle Scholar
  33. Swaffer D.S. and Ang C.Y. (1999). Growth inhibitory effect of l-canavanine against MIA PaCa-2 pancreatic cancer cells is not due to conversion to its toxic metabolite canaline. Anticancer Drugs 10: 113–118CrossRefGoogle Scholar
  34. Udedibie A.B.I. and Carlini C.R. (1998). Questions and answers to edibility problem of the Canavalia ensiformis seeds. Anim. Feed Sci. Technol. 74: 95–106CrossRefGoogle Scholar
  35. Volate S.R., Davenport D.M., Muga S.J. and Wargovich M.J. 2005. Modulation of aberrant crypt foci and apoptosis by dietary herbal supplements (quercetin, curcumin, silymarin, ginseng and rutin). Carcinogenesis, 26: 1450–1456.Google Scholar
  36. Yudovin-Farber I., Azzam T., Metzer E., Taraboulos A. and Domb A.J. (2005). Cationic polysaccharides as antiprion agents. J. Med. Chem. 48: 1414–1420PubMedCrossRefGoogle Scholar
  37. Zhang Y., Vareed S.K. and Nair M.G. (2005). Human tumor cell growth inhibition by nontoxic anthocyanidins, the pigments in fruits and vegetables. Life Sci. 76: 1465–1472PubMedCrossRefGoogle Scholar

Copyright information

© Springer 2006

Authors and Affiliations

  • J. B. Morris

There are no affiliations available

Personalised recommendations