Genetic Resources and Crop Evolution

, Volume 54, Issue 3, pp 519–527 | Cite as

Identification of duplicates and fingerprinting of primary and secondary wild annual Cicer gene pools using AFLP markers

  • F. Shan
  • H. J. Clarke
  • G. Yan
  • J. A. Plummer
  • K. H. M. Siddique
Article

Abstract

Wild annual Cicer gene pools contain valuable germplasm for chickpea improvement programs. Previous research showed that duplication might exist in accessions collected from these gene pools, which would hinder chickpea breeding and related research. AFLP (amplified fragment length polymorphism) markers were used to fingerprint the world collections of the primary and secondary gene pools including C. reticulatum Lad., C. bijugum K.H. Rech., C. judaicum Boiss. and C. pinnatifidum Jaub. et Sp. Duplicates were detected in a total of 24 accessions in both the gene pools, highlighting the necessity to fingerprint the germplasm. Genotypic difference was detected as gene pool specific, species specific and accession specific AFLP markers. These were developed into fingerprinting keys for accession identification between and within species and gene pools. Use of AFLP markers to detect duplicates and to identify accessions is a reliable method which will assist in the characterisation and use of wild annual Cicer germplasm in chickpea improvement programs. We recommend the procedure presented in this paper as a standard approach for the precise genetic identification and characterisation of future world collections of wild Cicer, to keep germplasm integrity and to benefit chickpea breeding and related research programs.

Key words

AFLP Chickpea Cicer bijugum Cicer judaicum Cicer pinnatifidum Cicer reticulatum Duplicate detection Germplasm Legume 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abbo S., Berger J. and Turner N.C. (2003). Evolution of cultivated chickpea: four bottlenecks limit diversity and constrain adaptation. Funct. Plant Biol. 30: 1081–1087CrossRefGoogle Scholar
  2. Arens P., Coops H., Jansen J. and Vosman B. (1998). Molecular genetic analysis of black poplar (Populus nigra L.) along Dutch rivers. Mol. Ecol. 7: 11–18CrossRefGoogle Scholar
  3. Astarini I.A., Plummer J.A., Lancaster R.A. and Yan G. (2004). Fingerprinting of cauliflower cultivars using RAPD markers. Aust. J. Agric. Res. 55: 117–124CrossRefGoogle Scholar
  4. Bekele E., Fido R.J., Tatham A.S. and Shewry P.R. (1995). Heterogeneity and polymorphism of seed proteins in tef (Eragrostis tef). Hereditas 122: 67–72CrossRefGoogle Scholar
  5. Berger J., Abbo S. and Turner N.C. (2003). Ecogeography of annual Cicer species: the poor state of the world collection. Crop Sci. 43: 1076–1090CrossRefGoogle Scholar
  6. Cabrita L.F., Aksoy U., Hepaksoy S. and Leitao J.M. (2001). Suitability of isozymeRAPD and AFLP markers to assess genetic differences and relatedness among fig (Ficus carica L.) clones. Sci. Hortic. 87: 261–273CrossRefGoogle Scholar
  7. Cansian R.L. and Echeverrigaray S. (2000). Discrimination among cultivars of cabbage using randomly amplified polymorphic DNA markers. Hortscience 35: 1155–1158Google Scholar
  8. Choumane W., Winter P., Weigand F. and Kahl G. (2000). Theor. Appl. Genet. 101: 269–278CrossRefGoogle Scholar
  9. Clarke H.J., Kuo I., Kuo J. and Siddique K.H.M. (2004). Abortion and stages for embryo rescue following wide crosses between chickpea (Cicer arietinum L.) and C. bijugum K.H. Rech. In: (eds) Legumes for the Benefit of AgricultureNutrition and the environment (5th European Conference on Grain Legumes and 2nd International Conference on Legume Genomics and Genetics), 7–11 June 2004, pp 193. Dijon, FranceGoogle Scholar
  10. Cooke R.J. (1999). Modern methods for cultivar verification and the transgenic plant challenge. Seed Sci. Technol. 27: 669–680Google Scholar
  11. Croser J.S., Ahmad F., Clarke H.J. and Siddique K.H.M. (2003). Utilisation of wild Cicer in chickpea improvement - progress, constraints, and prospects. Aust. J. Agr. Res. 54: 429–444CrossRefGoogle Scholar
  12. Gillies A.C.M. and Abbott R.J. (1998). Evaluation of random amplified polymorphic DNA for species identification and phylogenetic analysis in Stylosanthes (Fabaceae). Plant Syst. Evol. 211: 201–216CrossRefGoogle Scholar
  13. Knights T., Brinsmead B., Fordyce M., Wood J., Kelly A. and Harden S. (2002). Use of the wild relative Cicer echinospermum in chickpea improvement. In: McComb, J.A. (eds) Proceedings of the 12th Australasian Plant Breeding Conference15–20th September, 2002, pp 150–154. Australasian Plant Breeding Assoc. Inc, Perth, W. AustraliaGoogle Scholar
  14. Kumar P.P., Yau J.C.K. and Goh C.J. (1998). Genetic analyses of Heliconia species and cultivars with randomly amplified polymorphic DNA (RAPD) markers. J. Am. Soc. Hortic. Sci. 123: 91–97Google Scholar
  15. Mallikarjuna N. (1999). Ovule and embryo culture to obtain hybrids from interspecific incompatible pollinations in chickpea. Euphytica 110: 1–6CrossRefGoogle Scholar
  16. Noli E., Conti S., Maccaferri M. and Sanguineti M.C. (1999). Molecular characterization of tomato cultivars. Seed Sci. Technol. 27: 1–10Google Scholar
  17. Pradhan A., Yan G. and Plummer J.A. (2004). Development of DNA fingerprinting keys for the identification of radish cultivars. Aust. J. Exp. Agr. 44: 95–102CrossRefGoogle Scholar
  18. Robertson L.D., Singh K.B. and Ocampo B. (1995). A Catalog of Annual Wild Cicer Species. International Center for Agricultural Research in the Dry Areas (ICARDA). Aleppo, SyriaGoogle Scholar
  19. Shan F., Yan G. and Plummer J.A. (2003a). Karyotype evolution in the genus Boronia (Rutaceae). Bot. J. Linn. Soc. 142: 309–320CrossRefGoogle Scholar
  20. Shan F., Yan G. and Plummer J.A. (2003b). Meiotic chromosome behaviour and Boronia (Rutaceae) genome reorganization. Aust. J. Bot. 51: 599–607CrossRefGoogle Scholar
  21. Shan F., Yan G. and Plummer J.A. (2003c). Cytoevolution of Boronia genome revealed by flourescent in situ hybridisation with rDNA probes. Genome 46: 507–513CrossRefGoogle Scholar
  22. Shan F., Clarke H.J., Yan G., Plummer J.A. and Siddique K.H.M. (2004). Development of DNA fingerprinting keys for discrimination of Cicer echinospermum P.H. Davis accessions using AFLP markers. Aust. J. Agric. Res. 55: 947–952CrossRefGoogle Scholar
  23. Shan F., Clarke H.J., Plummer J.A., Yan G. and Siddique K.H.M. (2005). Geographical patterns of genetic variation in the world collections of wild annual Cicer characterized by amplified fragment length polymorphisms. Theor. Appl. Genet. 110: 381–391PubMedCrossRefGoogle Scholar
  24. Singh K.B., Ocampo B. and Robertson L.D. (1998). Diversity for abiotic and biotic stress resistance in the wild annual Cicer species. Genet. Resour. Crop Evol. 45: 9–17CrossRefGoogle Scholar
  25. Singh S., Gumber R.K., Joshi N. and Singh K. (2005). Introgression from wild Cicer reticulatum to cultivated chickpea for productivity and disease resistance. Plant Breeding 124: 477–480CrossRefGoogle Scholar
  26. Tohme J., Orlando Gonzalez D., Beebe S. and Duque M.C. (1996). AFLP analysis of gene pools of a wild bean core collection. Crop Sci. 36: 1375–1384CrossRefGoogle Scholar
  27. Mes T.H.M., den Jijs J.C.M. and Bachmann K. (2000). Amplified fragment length polymorphism (AFLP) markers reveal that population structure of triploid dandelions (Taraxacum officinale) exhibits both clonality and recombination. Mol. Ecol. 9: 1–8CrossRefGoogle Scholar
  28. Virk P.S., Newbury H.J., Jackson M.T. and Ford-Lloyd B.V. (1995). The identification of duplicate accessions within a rice germplasm collection using RAPD analysis. Theor. Appl. Genet. 90: 1049–1055CrossRefGoogle Scholar
  29. Winfield M.O., Arnold G.M., Cooper F., Le Ray M., White J., Karp A. and Edwards K.J. (1998). A study of genetic diversity in Populus nigra subsp. betulifolia in the upper Severn area of the UK using AFLP markers. Mol. Ecol. 7: 3–10CrossRefGoogle Scholar
  30. Winter P., Pfaff T., Udupa S.M., Huettel B., Sharma P.C., Sahi S., Arreguin-Espinoza R., Weigand F., Muehlbauer F.J. and Kahl G. (1999). Characterization and mapping of sequence-tagged microsatellite sites in the chickpea (Cicer arietinum L.) genome. Mol. Gen. Genet. 262: 90–101PubMedCrossRefGoogle Scholar
  31. Yadav S.S., Turner N.C. and Kumar J. (2002). Commercialization and utilization of wild genes for higher productivity in chickpea. In: McComb, J.A. (eds) Proceedings of the 12th Australasian Plant Breeding Conference15–20th September, 2002, pp 155–160. Australasian Plant Breeding Assoc. Inc, Perth, W. AustraliaGoogle Scholar

Copyright information

© Springer 2006

Authors and Affiliations

  • F. Shan
    • 1
  • H. J. Clarke
    • 1
  • G. Yan
    • 1
    • 2
  • J. A. Plummer
    • 1
    • 2
  • K. H. M. Siddique
    • 1
  1. 1.Centre for Legumes in Mediterranean Agriculture, Faculty of Natural and Agricultural SciencesThe University of Western AustraliaCrawley Australia
  2. 2.School of Plant Biology, Faculty of Natural and Agricultural SciencesThe University of Western AustraliaCrawley Australia

Personalised recommendations