Genetic Resources and Crop Evolution

, Volume 52, Issue 5, pp 619–628 | Cite as

Genetic Variation Among Portuguese Landraces of ‘Arrancada’ Wheat and Triticum petropavlovskyi by AFLP-based Assessment

  • A. S. M. G. Masum Akond
  • N. WatanabeEmail author


Portuguese wheat landraces, ‘Arrancada’ were collected from the Aveiro region, Portugal before the 1950s. We found in eight accessions of `Arrancada' hexaploid wheat with the long glume phenotype. We assessed the comparative genetic diversity among Portuguese `Arrancada' wheat and Triticum petropavlovskyi Udacz. et Migusch. using AFLP assays and discuss the origin of long glumed `Arrancada' wheat. With the four primer pairs a total of 4885 visible bands were scored corresponding to 99 AFLP markers as putative loci, of which 55 markers (54%) were polymorphic. UPGMA clustering and PCO grouping showed that long glumed ‘Arrancada’ wheat and T. petropavlovskyi were genetically diverse. Long glumed ‘Arrancada’ hexaploid wheat separated into two clusters (groups) in both the UPGMA dendrogram and in PCO analysis. Four long glumed accessions fell in the cluster of tetraploid wheat. A similar argument could be made for another four accessions which belong to the cluster of hexaploid wheat. The substantial level of genetic variation indicated that long glumed ‘Arrancada’ wheat and T. petropavlovskyi originated independently. It is most likely that the P-gene of long glumed ‘Arrancada’ hexaploid wheat was introduced from T. turgidum ssp. polonicum (L.) Thell. to T. aestivum via natural introgression or breeding. We suggest that the long glumed ‘Arrancada’ hexaploid wheat did not originate from T. aestivum through spontaneous mutation at the P locus


AFLP ‘Arrancada’ Diversity Introgression Long glume P locus Triticum durum Triticum petropavlovskyi Triticum polonicum Triticum turanicum 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aggarwal, R.K., Shenoy, V.V., Ramadevi, J., Rajkumar, R., Singh, L. 2002Molecular characterization of some Indian Basmati and other elite rice genotypes using florescent-AFLPTheor. Appl. Genet.105680690CrossRefPubMedGoogle Scholar
  2. Barrett, B.A., Kidwell, K.K., Fox, P.N. 1998Comparison of AFLP and pedigree-based genetic diversity assessment methods using wheat cultivars from the Pacific North WestCrop Sci.3812711278Google Scholar
  3. Chen, Q., Sun, Y., Dong, Y. 1985Genetic studies on interspecific hybrids of Xinjiang wheatActa Agron. Sin.112328Google Scholar
  4. Chen, P.D., Liu, D.J., Pei, G.Z., Qi, L.L., Huang, L. 1988The chromosome constitution of three endemic hexaploid wheats in Western ChinaMiller, T.E.Koebner, R.M.D. eds. Proceedings of the Seventh International Wheat Genet. SymposiumInstitute of Plant Science ResearchCambridge LaboratoryCambridge, UK7580Google Scholar
  5. Cox, T.S., Kiang, Y.T., Gorman, M.B., Roders, D.M. 1985Relationship between coefficient of parentage and genetic similarity indices in soybeanCrop Sci.25529532Google Scholar
  6. Efremova, T.T., Maystrenko, O.I., Laikova, L.I., Arbuzova, V.S., Popova, O.M. 2000Comparative genetic analysis of hexaploid wheats Triticum petropavlovskyi Udacz. et Migusch. and Triticum aestivum LRussian J. Genet.3611421148Google Scholar
  7. Gower, J.C. 1966Some distance properties of latent root and vector methods used in multivariate analysisBiometrica53325338Google Scholar
  8. Jaccard, P. 1908Nouvelles recherches sur la distribution floraleBull. Soc. Vaud. Sci. Nat.44223270Google Scholar
  9. Jakubtsiner, M.M. 1959K poznaniyu pschenits Kitaja (A contribution to the knowledge of the wheat of China)Bot. Zhurn.4414251436(in Russian)Google Scholar
  10. Karp, A., Seberg, O., Buiatti, M. 1996Molecular techniques in the assessment of botanical diversityAnn. Bot. (London)78143148CrossRefGoogle Scholar
  11. Lee, M. 1995DNA markers and plant breeding programsAdv. Agron.55265344Google Scholar
  12. Liu, X.M., Smith, C.M., Gill, B.S., Tolmay, V. 2001Microsatellite markers linked to six Russian wheat aphid resistance genes in wheatTheor. Appl. Genet.102504510CrossRefGoogle Scholar
  13. Manifesto, M.M., Schlatter, A.R., Hopp, H.E., Surarez, E.Y., Dubcovsky, J. 2001Quantitative evaluation of genetic diversity in wheat germplasm using molecular markersCrop Sci.41628690Google Scholar
  14. Powell, W., Morgante, M., Andre, C., Hanafey, M., Vogel, J., Tingey, S., Rafalski, A. 1996The comparison of RFLP, RADP, AFLP, and SSR (microsatellite) markers for germplasm analysisMol. Breed.2225238CrossRefGoogle Scholar
  15. Sokal, R., Michener, C. 1958A statistical method for evaluating statistical relationshipsUniv. Kansas Sci. Bull.3814091438Google Scholar
  16. Soleimani, V.D., Boum, B.R., Johnson, D.A. 2002AFLP and pedigree-based genetic diversity estimates in modern cultivars of durum wheat [Triticum turgidum L. subsp. durum (Desf.) Husno]Theor. Appl. Genet104350357CrossRefPubMedGoogle Scholar
  17. Udaczin, R.A., Miguschova, E.F. 1970Novoe v poznanii roda Triticum LVestnik S.-Kh. Nauki92024(in Russian)Google Scholar
  18. Vos, P.R.H., Bleeker, M., Reijans, M., Lee, T., Hornes, M., Freijters, A., Pot, J., Peleman, J., Kuiper, M., Zebeau, M. 1995AFLP: a new technique for DNA finger printingNucleic Acid Res.2344074414PubMedGoogle Scholar
  19. Wang, H.-J., Huang, X.-Q., Röder, M.S., Börner, A. 2002Genetic mapping of loci determining long glumes in the genus TriticumEuphytica123287293CrossRefGoogle Scholar
  20. Watanabe, N. 1999Genetic control of the long glume phenotype in tetraploid wheat by homoeologous chromosomesEuphytica1063943CrossRefGoogle Scholar
  21. Watanabe, N. 2003Inheritance and chromosomal location of the gene for long glume phenotype in a landrace of hexaploid wheatICDW8861Pogna, N.E.Romano, M.Pogna, E.A.Galterio, G. eds. Proceedings of the 10th International Wheat Genet. SymposiumIstituto Sperimentale per la CerealicolturaRomaItaly537538Google Scholar
  22. Watanabe N., Bannikova S.V. and Goncharov N.P. 2004. Inheritance and chromosomal location of the gene for long glume phenotype found in Portuguese landraces of hexaploid wheat“Arrancada”. J. Genet. Breed. 59: (in press).Google Scholar
  23. Watanabe, N., Imamura, I. 2002The inheritance and chromosomal location of a gene for long glume phenotype in Triticum petropavlovskyi Udacz. et MiguschJ. Genet. Breed.57221227Google Scholar
  24. Watanabe, N., Yotani, Y., Furuta, Y. 1996The inheritance and chromosomal location of a gene for long glume in durum wheatEuphytica90235239CrossRefGoogle Scholar
  25. Watanabe, N., Yotani, Y., Anada, M. 1998Inheritance and the effect of a gene for long glumea key character for taxonomyJaradat, A.A. eds. Triticeae IIIScience Publishers, Inc.EnfieldUSA103108Google Scholar
  26. Zabau M. and Vos P. 1993. Selective restriction fragment amplification: a general method for DNA finger printing. European Patent Application 92402629.7 (Pub. no. 0534858 A1).Google Scholar

Copyright information

© Springer 2005

Authors and Affiliations

  1. 1.Graduate School of AgricultureGifu UniversityGifuJapan
  2. 2.Faculty of Applied Biological SciencesGifu UniversityGifuJapan

Personalised recommendations